بررسی تأثیر هندسه شهری بر چگونگی شکل‌گیری جزیره حرارتی شهر تهران (مطالعه موردی: ناحیه دو و شش منطقه 3)

نویسندگان

1 دانشجوی دکترای اقلیم شناسی، دانشگاه خوارزمی، تهران، ایران.

2 استاد اقلیم شناسی، دانشگاه خوارزمی، تهران، ایران.

3 دانشیار اقلیم شناسی، دانشگاه خوارزمی، تهران، ایران.

چکیده

در این مقاله به منظور محاسبه حداکثر شدت جزایر حرارتی منطقه 3 (ناحیه دو و شش) شهر تهران بر اساس داده‌های هندسه شهری، یک مدل شبیه سازی ارائه شده است که در سیستم اطلاعات جغرافیایی (GIS) گنجانده شده است. روش این تحقیق بر مبنای معادله نظری - عددی اوک، مطالعه و انتخاب ابزارهای موجود در GIS و طراحی مدل محاسبه و الگوریتم حاصله در سیستم عامل GIS است. داده‌های مورد نیاز برای تحقیق حاضر، شامل ارتفاع طبقات ساختمان‌ها و عرض معابر اصلی 227 بلوک شهری در منطقه 3 شهر تهران است. نتایج بررسی ارتفاع بلوک‌های شهری نشان داد که شمار بلوک‌های دارای ارتفاع متوسط بین 10 تا 12 متر 99 بلوک شهری می‌باشد، همچنین در نواحی دو و شش، غالب معابر دارای عرض متوسط 21 متر می باشند. نهایتاً نتیجه شبیه‌سازی معادله اوک بیانگر این است که ضریب پایین نسبت H/W باعث شد که بیشتر بلوک‌ها دارای توزیع همگنی باشند. به عبارتی دیگر، شدت جزیره حرارتی در بلوک‌های شهری نواحی دو و شش منطقه سه تهران بین 4-7 درجه سانتی‌گراد می‌باشد که چشمگیر نبوده است و دلیل این امر را می‌توان در پیکربندی مناسب هندسه ساختمان‌ها با استفاده از شاخص‌های بکارگرفته شده در اصول معماری و شهرسازی این منطقه دانست. بنابراین، این ابزار توسعه یافته به محققان در شبیه‌سازی UHI در سناریوهای مختلف شهری کمک خواهد کرد و بحث‌های در مورد تأثیر تنظیمات مختلف هندسه شهری در شکل‌گیری جزایر حرارتی را پیشنهاد می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Urban Geometry on the Formation of Urban Heat Islands (Case Study: (Districts 2 and 6 of District 3 of Tehran)

نویسندگان [English]

  • Fariba Sayadi 1
  • Zahra Bigom Hejazizadeh 2
  • Mohammad Saligheh 3
1 PhD Student in Climatology, Kharazmi University, Tehran, Iran.
2 Professor of Climatology, Kharazmi University, Tehran, Iran.
3 Associate Professor of Climatology, Kharazmi University, Tehran, Iran.
چکیده [English]

Extended Abstract
Introduction
With the increase of urban constructions and land use change, especially in big cities, the temperature of urban centers has increased compared to the suburbs, which has led to the formation of the phenomenon of heat islands in these areas. In fact, the heat islands of cities are closed isthmus lines that are known as the heat centers of the city, especially in areas built by humans and artificial structures. Since the purpose of climate studies in urban plans is to identify the environmental characteristics affected by the prevailing climatic conditions, so it can be of great help in optimizing the spatial structures. Climatic factors and elements in their quantitative and qualitative changes affect the environmental situation. Although these changes may be gradual and gradual, they can have lasting consequences. Therefore, the study of heat islands due to urban settlements has been considered by most researchers and its consequences for urban planning and global warming over the past decade have been considered with the expansion of urbanization and the occurrence of urban-related phenomena. The study of urban heat islands has begun in most of the most populous regions of the world.
 
Methodology
In order to develop the present study, the OK numerical equation has been used. Due to the fact that numerical models can be programmed in the field of climate by certain conditions, so they use micro-climate scales in applications. Therefore, in recent decades, under the developed conditions of cities, numerical models have been widely used, among these models is the Oke numerical model, which compares the results of the observed data according to the numerical algorithm to analyze the formation of urban heat islands with Using a series of mathematical functions and fractions, they finally designed a numerical model to study the heat island in urban and densely populated areas.
 
Results and Discussion
First, the average height of buildings in the area was calculated based on Equation (3). Examination of the height of the blocks showed that the highest height is related to the urban block with 24 meters and the lowest height is related to the urban block with 5 meters. Therefore, by examining the height of urban blocks, it was estimated that the number of blocks with an average height of 10 to 12 meters is more, the number of these blocks is 99. Therefore, in areas two and six, most urban blocks have an average height of 12 meters, in other words, each urban block has an average of 4 floors. According to the classification of the average width of passages, out of 227 urban passages in the region, 123 passages have an average of 21 meters. Therefore, the maximum width of the passages in the area is 21 meters. Also, in the northeastern parts of the region (District 6) and the southwest of the region (District 2), the width of the passages has reached 26 meters, which is due to the location of these areas near the highways leading to these areas. In total, in areas two and six, most of the passages have an average width of 21 meters.
Then the output of the Oak equation showed that the larger the ratio (H / W), the higher the heat island of the city (Table 1 Appendix). It can also be said that in most areas there was homogeneity between the height and width of the passages. The intensity of the heat island in the areas showed that the range is between 4-7 degrees Celsius, there is not much difference in terms of the intensity of the heat island in the whole region. The reason for this can be considered as proper planning and proper management in the field of how the buildings are located in relation to the width of the passages and observing the principles of urban planning. The results of H / W with UHI showed that if there is heterogeneity between urban blocks, the intensity of UHI will be higher at lower H / W coefficients than at higher H / W coefficients. That is, the greater the heterogeneity between the height and width of the passages, the greater the intensity of the UHI. Also, according to the following diagram, it can be inferred that in the studied areas, the low coefficient of H / W ratio has caused that most of the blocks have a homogeneous distribution and therefore the intensity of the heat island in the study area is not significant.

Conclusion
In this paper, we have tried to investigate the effect of urban geometry on the maximum intensity of the heat island, using GIS tools and the parameters of urban blocks and the width of passages. The OK numerical equation was used to investigate the intensity of the heat island. The results showed that urban geometry (height of urban block and width of passages) as two input parameters (H / W) affect the maximum intensity of the heat island of the city. In the second and sixth districts of Tehran, most of the urban blocks have an average of 4 floors (ie 12 meters). Also, the width of the passages in most areas of the region is considered in proportion to the height of the urban blocks. OKE equation simulation study showed that with increasing H / W ratio, UHImax growth is more significant, this result is somewhat consistent with the study of Gonzalez et al. (2011) and Osaki et al. (2011, 2018). Finally, the intensity of the heat island in areas two and six of Tehran's third district has not been felt, which indicates the proper configuration of the geometry of the buildings using the indicators used in the principles of architecture and urban planning in this area. Therefore, it can be said that this proposed model (OKE) can help to understand urban problems. Therefore, with proper planning and observance of urban planning guidelines by organizations and competent individuals in order to create better conditions, more targeted strategies can be adopted that can prevent the spread of the heat island phenomenon in large cities, including the metropolis of Tehran.
 

کلیدواژه‌ها [English]

  • Heat Island Intensity Simulation
  • Numerical Equation Oke
  • urban blocks
  • GIS
  • Tehran
  1. آروین، عباسعلی (1397) بررسی جزیره حرارتی در ارتباط با آلودگی هوا در شهر اصفهان، جغرافیا و مخاطرات محیطی، دوره5، شماره 25، صص. 129-115.
  2. رهنمایی، محمد تقی (1369) مجموعه مباحث و روش‌های شهرسازی، چاپ سوم، تهران، مرکز مطالعات و تحقیقات معماری و شهرسازی ایران، چاپ گستر.
  3. سلیقه، محمد (1382) توجه به باد در ساخت کالبد فیزیکی شهر زابل،. مجله جغرافیا و توسعه. دوره 4، شماره 14، صص. 109-122.
  4. شکیبا، علیرضا (1388) تحلیل رابطه کاربری و پوشش اراضی و جزیره حرارتی شهر تهران، سنجش از دور و جی ای اس ایران، دوره1، شماره1.صص.1.
  5. صادقی نیا، علیرضا؛ علیجانی، بهلول و ضیائیان، پرویز (1391) تحلیل فضایی- زمانی جزیره حرارتی کلانشهر تهران با استفاده از سنجش ازدور و سیستم اطلاعات جغرافیایی، مجله جغرافیا و مخاطرات محیطی، شماره4. صص.17-1.
  6. علیجانی، بهلول؛ طولابی‌نژاد، میثم و صیادی، فریبا (1396) محاسبه شدت جزیره حرارتی بر اساس هندسه شهری موردمطالعه: محله کوچه باغ شهر تبریز، تحلیل فضایی مخاطرات محیطی، شماره3، صص. 112-99.
  7. ملک پور، پیمان و طالعی، محمد (1390) مدل‌سازی ارتباط کاربری- پوشش اراضی و حرارت سطح زمین، با استفاده از داده‌های سنجندةASTER، دوره18، صص. 42-37.
  8. یوسفی، یدالله (1397) شکل گیری جزیرة حرارتی و اثر آن بر تغییرپذیری دما در شهر بابل، محیط شناسی، شماره2، صص. 354-345.
  9. Atkinson, B.W. (2003) Numerical modelling of urban heat-island intensity. Boundary Layer Meteorology, Vol.109, No.3, pp.285-310. DOI: 10.1023/A:102582032 6672.
  10. Alijani, B., Toulabi-Nejad, M., Sayadi, F. (2017) Calculation of thermal island intensity based on the studied urban geometry: Bagh alley neighborhood of Tabriz, spatial analysis of environmental hazards, 3, pp. 112-99. [Persian].
  11. Arvin, Abbas Ali (2018). Investigation of thermal island in relation to air pollution in Isfahan, Geography and environmental hazards, No. 25, pp. 129-115. [Persian].
  12. Balázs, Bernadett; Unger, Janos; Gál, Tamas; Sümeghy, Zoltan; Geiger, Janos; & Szegedi, Sandor. B. (2009) Simulation of the mean urban heat island using 2D surface parameters: Empirical modelling, verification and extension. Meteorological Applications, Vol.16, No. 3, pp. 275-287. DOI: 10.1002/met.116.
  13. Carolina, S., Gussona, D & Duarte, H.S. (2016) Effects of Built Density and Urban Morphology on Urban Microclimate - Calibration of the Model ENVI-met V4 for the Subtropical Sao Paulo, Brazil, Procedia Engineering,Vol. 169, PP. 2 – 10.
  14. Chen, H., Ooka, R. & Kato, S. (2008) Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction. Building and Environment, Vol.43, No.1, pp. 18-30.DOI: http://dx.doi.org/10.1016/j.buildenv.2006.11. 039.
  15. Dhalluin, A. & Bozonnet, E. (2015) Urban heat islands and sensitive building design – A study in some French cities’ context, Sustainable Cities and Society, Vol.19, pp. 292–299.http://dx.doi.org/10.1016/j.scs.2015.06.009.
  16. Dikman, M., Ishara, D., Dirk, L., Chris, Z. & Assela, P. (2019) The Sensitivity of Urban Heat Island to Urban Green Space a Model-Based Study of City of Colombo, Sri Lanka, atmosphere, doi:10.3390/atmos1003.
  17. Fahmy, M., Mokhtar, H. & Gira, A. (2012) Adaptive urban form design on a climate change basis; A case study in Nuba, Egypt. ICUC8 – 8th International Conference on Urban Climates, 6th-10th August, 2012, UCD, Dublin Ireland.
  18. Gonçalves, J.C.S., Mulfarth, R.K., Monteiro, L.M., Moura, N.C., Prata, A.R., Mianna, A.C. & Cavalcante, R. (2011) Adensamento urbano e desempenho ambiental no centroda cidade de São Paulo. Proceedings... XI Encontro Nacional e VII Encontro Latino Americano de Conforto no Ambiente Construído. Búzios-RJ, 2011.
  19. Jusuf, SK., Hien, WN. (2009) Development of empirical models for an estate level air temperature prediction in Singapore. Proceedings. Second International Conference on Countermeasures to Urban Heat Islands.pp:19-23.
  20. Lehoczky, A., Sobrino, J., Skoković, D. & Aguilar, E. (2017) The Urban Heat Island Effect in the City of Valencia: A Case Study for Hot Summer Days. Urban Science, Vol.1, No.1, https://doi.org/10.3390/urbansci1010009.
  21. Levermore, GJ. & Cheug, H.K.W. (2012) A low-order canyon model to estimate the influence of canyon shape on the maximum urban heat island effect. Building Services Engineering Research and Technology, Vol.33, No.4, pp. 371-385, http://journals. sagepub.com/toc/bsea/33/4.
  22. Levermore, G; Parkinson, J., Lee, K., Laycock, P. & Lindley, S. (2017) The increasing trend of the urban heat island intensity, Urban Climate, PP.1-9, http://dx.doi.org/10.1016/j.uclim.2017.02.004.
  23. Lio Du, T., Zhou, MSLI. & Gong, D.Y (2014) Urban heat island effects derived from dense Landsat thermal observations in Nanjing, China, 35th International Symposium on Remote Sensing of Environment (ISRSE35).
  24. Marciotto, ER; Oliveira, AP; Hanna, S.R. (2010) Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall canyon energy budget scheme, Building and Environment, Vol.45, No.11, pp.2497-2505, DOI: 10.1016/j.buildenv. 2010.05.012.
  25. Masek, J., Lindsay, F. & Goward, S.N. (2000) Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations,  International Journal of Remote Sensing, Vol. 21, No.18, pp.3473-3486.
  26. Malekpour, P. & Talei, M. (2011) Modeling land use-land cover and surface temperature modeling, using ASTER sensor data, Vol.37, No.58, pp. 42-37. [Persian].
  27. Oke, T.R. (1981). Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of Climatology, Vol.1, No.3, pp.237-254, DOI: 10.1002/joc.3370010304.
  28. Oliveira Panao, M., Gonçalves, H. & Ferrão, P. (2009) Numerical analysis of the street canyon thermal conductance to improve urban design and climate, Building and Environment, Vol.44, No.1, pp.177-187, DOI: 10.1016/j.buildenv. 2008.02.004.
  29. Santo, MA., Maggiotto, G., Stocker, J., Carruthers, D. & Sabatino, SD. (2012) Comparison of ADMS Temperature and Humidity model and ENVIMET and measured temperature values. ICUC8 –8thInternational Conference on Urban Climates, 6th-10th August, UCD, Dublin Ireland.
  30. Svensson, MK; Thorsson, S; Lindqvist, S.A (2003) A geographical information system model for creating bioclimatic maps – examples from a high, mid-latitude city. Int J Biometeorol, Vol.47, pp. 102-112.
  31. Rahnamaei, M.T (1990) Collection of topics and methods of urban planning, third edition, Tehran, Center for Architectural and Urban Studies and Research of Iran, Gostar. [Persian].
  32. Sadeghinia, A., Alijani, B. & Ziaeian, P. (2012) Spatio-temporal analysis of the thermal island of Tehran metropolis using remote sensing and GIS, Journal of Geography and Environmental Hazards, Vol.4, pp. 17-1. [Persian].
  33. Saligheh, M. (2003) Paying attention to the wind in building the physical body of Zabol city. Journal of Geography and Development. No.14. pp. 109-122. [Persian].
  34. Shakiba, A. (2009) Analysis of land use and land cover and thermal island of Tehran, remote sensing and GIS Iran, No. 1, pp.1.[Persian].
  35. Svensson, MK. Thorsson, S. & Lindqvist, S.A. (2003) A geographical information system model for creating bioclimatic maps – examples from a high, mid-latitude city. Int J Biometeorol, Vol. 47, pp.102-112.
  36. Yousefi, Y. (2018) Formation of a thermal island and its effect on temperature variability in the city of Babol, Environmental Science, Vol.2, pp. 354-345. [Persian].
  37. Zinzi, M., Carnielo, E. & Marinelli, E. (2012) Thermal and solar characterization of cool asphalts to mitigate urban temperatures. ICUC8 – 8th International Conference on Urban Climates, 6th-10th August, UCD, Dublin Ireland.