پایش روند دمای ماهیانه ایران مبتنی بر برونداد پایگاه داده مرکز پیش بینی میان مدت هواسپهر اروپایی

نویسندگان

1 دانشیار اقلیم شناسی، دانشگاه شهید بهشتی، تهران ایران.

2 دانشجوی دکترای اقلیم شناسی، دانشگاه شهید بهشتی، تهران ایران.

چکیده

نقش دما و اهمیت دگرگونی آن باعث شده است که طی چند دهه اخیر توجه جدی به این پدیده آب و هوایی شود. روند رو به رشد دما در برخی از مناطق ایران و پیامدهای احتمالی آن منجر به نگرانی جدی برای پژوهشگران و برنامهریزان شده است. هدف از این  پژوهش دگرگونی مکانی روند دمای ایران طی چهار دهه اخیر می باشد. برای ارزیابی  این روند از پایگاه داده مرکز پیشبینی میانمدت هواسپهر اروپایی (ECMWF) نسخه ERA Interim طی دوره زمانی 1979  - 2015 میلادی با تفکیک مکانی 125/0×125/0 درجه قوسی برای هر ماه با 9966 یاخته  استفاده  شد. و جهت آشکارسازی روند دما از دو روش ناپارامتریک Mann–Kendall و Sen’s Slope بهره گرفته شد. نتایج نشان داد، چهار ماه فوریه، مارس، می و اکتبر روند دمایی یک جهته (افزایشی) را تجربه کردهاند. بیشینه متوسط آهنگ روند افزایشی کشور مربوط به فصل زمستان و کمینه آن متعلق به فصل پاییز بوده است. در تمامی ماههای سال مناطقی از کشور که بین مدار 30 تا 35 درجه شمالی قرار داشتهاند بیشینه روند معنادار افزایشی را تجربه کردهاند. قلمرو مناطق سرد و معتدل کشور بیش از سایر مناطق دستخوش افزایش روند دما بودهاند. همچنین روند منفی جنوب شرق و جنوب (سواحل بوشهر) ایران ناشی از چهار دلیل: 1 - دگرگونی خرد آب و هواشناسی محل؛ 2 - افزایش هواویزهای هواسپهری؛ 3-  بخارآب قابل بارش و 4 - ابرها و دامنه دگرگونی دما، هستند. بیشینه متوسط شیب دمایی کشور با 11/0 درجه سانتی گراد مربوط به ماه فوریه و کمینه آن نیز به با 002/0 درجه سانتیگراد در ماه نوامبر اتفاق افتاده است. به طور کلی زمستانهای ایران در حال گرمتر شدن است و این امر یک خطر جدی برای کانونهای برفگیر کشور تلقی خواهد شد.  

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring Iran's monthly temperature trend based on the output of the European Medium Term Forecast Center

نویسندگان [English]

  • Mahmoud Ahmadi 1
  • Abbas Ali Dadashi Rudbari 2
1 Associate Professor of Climatology, Shahid Beheshti University, Tehran Iran.
2 PhD student in Climatology, Shahid Beheshti University, Tehran Iran.
چکیده [English]

The role of temperature and the importance of its transformation has led to serious attention to this climatic phenomenon in recent decades. The rising temperature trend in some parts of Iran and its possible consequences have led to serious concerns for researchers and planners. The purpose of this study is to spatially change the temperature trend in Iran during the last four decades. To evaluate this trend, the European Air Force Medium-Term Prediction Center (ECMWF) ERA Interim database was used during the period 1979-2015 with a spatial resolution of 0.125 0 0.125 degrees for each month with 9966 cells. Manp – Kendall and Sen’s Slope nonparametric methods were used to detect the temperature trend. The results showed that the four months of February, March, May and October experienced a one-way (increasing) temperature trend. The maximum average rate of the country's upward trend was related to the winter season and the minimum belonged to the autumn season. In all months of the year, regions of the country that were between 30 and 35 degrees north have experienced the most significant upward trend. The territory of cold and temperate regions of the country has been subject to increasing temperature more than other regions. Also, the negative trend of southeast and south (Bushehr coasts) of Iran due to four reasons: 2 - increase of airborne airways; 3- Water vapor is rainy and 4- Clouds and temperature change amplitude. The maximum average temperature slope of the country with 0.11 ° C is related to February and the minimum is 0.002 ° C in November. In general, Iran's winters are getting warmer and this will be considered a serious threat to the snow-covered centers of the country.

کلیدواژه‌ها [English]

  • Temperature trend
  • ECMWF database
  • Mann – Kendall method
  • Sen’s Slope method
  • Iran
  1. احمدی، محمود؛ احمدی، حمزه؛ داداشی رودباری، عباسعلی) 1331(. واکاوی روند تغییرات و الگوی فضایی ابرناکی سالانه و فصلی در ایران، مجله مخاطرات محیط طبیعی، انتشار آنلاین از تاریخ 21 خرداد 1331، شناسه دیجیتال )DOI):10.22111/jneh.2017.3200
  1. احمدی، محمود؛ داداشی رودباری، عباسعلی) 1331(. تروریسم آبی بحرانی نو در جهان؛ مطالعه موردی: سوریه، اولین همایش بینالمللی بحرانهای ژئوپلیتیکی جهان اسلام، تهران، موسسه آیندهپژوهی جهان اسلام، 24 و 21 آبان دانشگاه شهید بهشتی تهران.
  2. براتی، غلامرضا؛ موسوی، سید شفیع) 1314(. جابجایی مکانی موجهای زمستانی گرما در ایران، مجله جغرافیا و توسعه، دوره 3، شماره پیاپی 1، صص 41-12.
  3. داداشی رودباری، عباسعلی؛ فلاح قالهری، غلامعباس؛ کرمی، مختار؛ باعقیده، محمد) 1334(. تحلیل تغییرات بارش حوضه آبریز هراز با استفاده از روشهای آماری و تکنیک تحلیل طیفی، هیدروژومورفولوژی، شماره 7، صص 13-11.
  4. 1. دارند، محمد) 1334(. واکاوی وردایی زمانی- مکانی رطوبت جوی ایرانزمین طی بازه زمانی 1373-2213، پژوهشهای جغرافیای طبیعی )پژوهشهای جغرافیایی(، دوره 47، شماره 2، صص 213-233.
  5. 1. دارند، محمد؛ زند کریمی، سوما) 1334(. واکاوی سنجش دقت زمانی- مکانی بارش پایگاه دادة مرکز پیشبینی میانمدت جوی اروپایی )ECMWF( بر روی ایرانزمین، پژوهشهای جغرافیای طبیعی، دوره 47، شماره 4، صص 111-171.
  6. دارند، محمد؛ زند کریمی، سوما) 1331(. ارزیابی دقت دادههای بارش مرکز اقلیمشناسی بارش جهانی بر روی ایران، مجله ژئوفیزیک ایران، جلد 12، شماره 3، ص 31-113.
  7.  رحیم زاده، فاطمه؛ نساجی زواره، مجتبی) 1333(. روند و تغییرپذیری دما در ایران در دوره 2212-1312 پس از تعدیل ناهمگنیهای غیرطبیعی موجود دردادهها، تحقیقات جغرافیایی، دوره 23، شماره 4 )پیاپی 111(، صص 111-131.
  8. 3. شیر غلامی، هادی؛ قهرمان، بیژن) 1314(. بررسی روند تغییر دمای متوسط سالانه در ایران، علوم و فنون کشاورزی و منابع طبیعی، شال نهم، شماره اول، صص 3-23.
  9. 12. مسعودیان، سید ابوالفضل) 1313(. بررسی روند دمای ایران در نیم سده گذشته، مجله جغرافیا و توسعه، دوره 2، شماره پیاپی 3، صص 13-121.
  10. مسعودیان، سید ابوالفضل )1332(. آبوهوای ایران، انتشارات شریعه توس مشهد، چاپ اول، مشهد، 211 ص.
  11. منتظری، مجید) 1333(. واکاوی زمانی مکانی دماهای سالانه ایران طی دورهی 2221-1311، مجله جغرافیا و توسعه، دوره 12، شماره 31، صص 223-221.
  12. هاردی، جان تی) 1317(. تغییر اقلیم علل، اثرات و راهحلها، ترجمه: مترجمان لیلی خزانهداری، منصوره کوهی، شهرزاد قندهاری و مهدی آسیائی، انتشارات پاپلی، مشهد، 314 ص.
  13. Bozkurt, D., & Sen, O. L. (2013). Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of hydrology, 480, 149-.161
  14. Bukovsky, M. S. (2012). Temperature trends in the NARCCAP regional climate models. Journal of Climate, 25(11), 3985-.1993
  15. Collins, J. M. (2011). Temperature variability over Africa. Journal of climate, 24(14), 3649-.6663
  16. Duhan, D., & Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136-.941
  17. Feidas, H. (2017). Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theoretical and Applied Climatology, 129(3-)4, 1383-.6041

869

  1. Folland, C. K., Karl, T. R., & Jim Salinger, M. (2002). Observed climate variability and change. Weather, 57(8), 269-278.
  2. Gleditsch, N. P., Furlong, K., Hegre, H., Lacina, B., & Owen, T. (2006). Conflicts over shared rivers: Resource scarcity or fuzzy boundaries?. Political Geography, 25(4), 361-382.
  3. Gleick, P. H. (2010). Climate change, exponential curves, water resources, and unprecedented threats to humanity. Climatic change, 100(1), 125-129.
  4. Gleick, P. H. (2014). Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society, 6(3), 331-340.
  5. Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4).
  6. IPCC (2013). Climate change 2013: the physical science basis. In Working Group I Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5)–changes to the underlying scientific/technical assessment. Cambridge University Press, Cambridge and New York.
  7. IPCC (Intergovernmental Panel on Climate Change) (2007). Summary for policy makers. In: IPCC. Climate change: The physical Science basic, Contribution of working group first to the Fourth assessment report of the intergovernmental panel on climate change, Cambridge university press, 450p.
  8. Jones, P. D., & Moberg, A. (2003). Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of climate, 16(2), 206-223.
  9. Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., & Morice, C. P. (2012). Hemispheric and largescale landsurface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres, 117(D5).
  10. Kendall, M. (1975). Multivariate analysis. Charles Griffin.
  11. Kousari, M. R., Ahani, H., & Hendi-zadeh, R. (2013). Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and planetary change, 111, 97-110.
  12. Kousari, M. R., Ekhtesasi, M. R., Tazeh, M., Naeini, M. A. S., & Zarch, M. A. A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103(3-4), 321-335.
  13. Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., & Rennie, J. (2011). An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres, 116(D19).
  14. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
  15. Nicholls, N., Gruza, G. V., Jouzel, J., Karl, T. R., Ogallo, L. A., & Parker, D. E. (1996). Observed climate variability and change (pp. 133-192). Cambridge University Press.
  16. Santer, B. D., Taylor, K. E., Wigley, T. M. L., & Johns, T. C. (1996). A search for human influences on the thermal structure of the atmosphere. Nature, 382(6586), 39.
  17. Satheesh, S. K., & Moorthy, K. K. (2005). Radiative effects of natural aerosols: A review. Atmospheric Environment, 39(11), 2089-.0112
  18. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379-.9831
  19. Simmons, A. (2006). ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF newsletter, 110, 25-.63
  20. Smadi, M. M. (2006). Observed abrupt changes in minimum and maximum temperatures in Jordan in the 20th century. Am J Environ Sci, 2(3), 114-.021
  21. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... & Midgley, B. M. (2013). IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  22. Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132-.041
  23. Zhao, C., Liu, X., Ruby Leung, L., & Hagos, S. (2011). Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmospheric Chemistry and Physics, 11(5), 1879-.3981 Zheng, X., & Basher, R. E. (1999). Structural time series models and trend detection in global and regional temperature series. Journal of Climate, 12(8), 2347-.8532