اولویت بندی ریسک زمین لرزه در مناطق تحت تأثیر زلزله سرپل ذهاب با استفاده از مدل الکتره

نویسندگان

1 دانشجوی دکترای ژئومورفولوژی مدیریت محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

2 دانشیار ژئومورفولوژی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

3 استاد ژئومورفولوژی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

4 استادیار ژئومورفولوژی، دانشگاه شیراز، شیراز، ایران.

چکیده

اولویت بندی ریسک و خطر زمین لرزه در مناطق مختلف یکی از راهکارهای مدیریت بحران در جهت مواجه شدن با پدیده زمین لرزه محسوب می شود. بر این اساس مناطق مختلف تحت پوشش زمین لرزه سرپل ذهاب از نظر ریسک زمین لرزه بر اساس مدل الکتره مورد اولویت بندی قرار گرفت. معیارهای مورد نظر جهت اولویت بندی شامل سن سنگ شناسی، فاصله از گسل، شیب، ارتفاع، بارش، فاصله از رودخانه، فاصله از جاده و کاربری اراضی می باشد. وزن معیارها بر اساس مدل سلسله مراتبی به دست آمد. روش تجزیه و تحلیل داده ها هم به صورت کمّی و به صورت ماتریس کارائی ارائه گردید. با تلفیق لایه ها در محیط GIS با استفاده از مدل الکتره نقشه پهنه بندی در 5 طبقه خطر تهیه شد. باتوجه به اولویت بندی مناطق از نظر پتانسیل زلزله خیزی مناطق آسیب دیده که از مدل الکتره استخراج گردید، منطقه سرپل ذهاب با بیشترین پتانسیل زلزله خیزی، اولویت اول را به خود اختصاص داده است. دلیل بالا بودن خطر زلزله خیزی این منطقه ساختار زمین شناسی منطقه، نزدیکی به گسل اصلی زاگرس است. همچنین، منطقه دالاهو و جوانرود مشترکاً در اولویت دوم جای گرفته اند. دلیل اصلی پتانسیل زلزله خیزی آن هم ساختار زمین شناسی و فراوانی گسل ها و قرار گرفتن روی گسل زاگرس رورانده است. به منظور صحت سنجی مدل مورد استفاده در منطقه اقدام به انطباق نقشه ناپایداری ها با هر یک از پهنه های خطر گردید. نتایج نشان داد که از بین 38 مورد ناپایداری ژئومورفولوژیکی شناخته شده در منطقه تعداد 18 مورد در طبقه خطر خیلی زیاد و تعداد 11 مورد در طبقه خطر زیاد قرار گرفته اند که بیانگر کارائی نسبتأ خوب مدل الکتره در پهنه بندی و اولویت بندی نواحی به منظور مدیریت مخاطرات محیطی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prioritization of Earthquake Risk in Areas Affected by Sarpol-e-Zahab Earthquake Using Electere Model

نویسندگان [English]

  • Fathollah Naderi 1
  • Samad Fotoohi 2
  • Hossein Negaresh 3
  • Marzieh Khalili 4
1 PhD student in Geomorphology, Environmental Management, Sistan and Baluchestan University, Zahedan, Iran.
2 Associate Professor of Geomorphology, Sistan and Baluchestan University, Zahedan, Iran.
3 Professor of Geomorphology, Sistan and Baluchestan University, Zahedan, Iran.
4 Assistant Professor of Geomorphology, Shiraz University, Shiraz, Iran.
چکیده [English]

Extended Abstract
Introduction
The Sarpol-e-Zahab earthquake with a magnitude of 7.3 occurred at 21:48 local time on November 12, 2017 near the city of Ozgeleh-e-Sarpol-e-Zahab in Kermanshah province in northwestern Iran. The earthquake destroyed large parts of the city of Sarpol-e Zahab and many surrounding towns and villages. The magnitude of the earthquake was so great that it was felt up to hundreds of kilometers from the epicenter (even in Tehran). The region affected by the Sarpol-e Zahab earthquake is very prone to the occurrence of various geological and geotechnical instabilities such as landslides and rock falls. The reasons for this talent are the existence of young folds in the Zagros Mountains along with the operation of the faults that cut these mountains, which have caused severe fractures in the region. On the other hand, the sequence of hard and loose layers of geological formations has predisposed many of these areas to slip hard layers on the loose lower layers due to the loss of the heel of the slopes, due to river leaching and construction operations. Also, rich groundwater resources in the mountains of the region have increased the potential for slope instabilities. Another important aspect of earthquake research is the study of factors affecting earthquakes, such as the type of materials that make up the earth's bed, the impact of geological structures such as faults and fractures, and slopes. . . Are. Another aspect of research is to study the geological and geomorphological consequences of earthquakes such as Landslides, Rockslides, Landslides and Rises, etc. in order to manage the crisis and assess the damage caused by them. Therefore, the main issue in this study is the exposure of the study area to two main issues, namely the damage caused by the earthquake itself and the other effects, phenomena and geomorphological evidence that came after the main earthquake. Therefore, accurate identification of areas in terms of seismicity and potential for seismicity is necessary in order to manage and plan it. The main purpose of this study, taking into account the results of this research and also the characteristics affecting the occurrence of earthquake, in the study area, the ELECTERE technique has been used to prioritize different areas covered by the Sarpol-e-Zahab earthquake. Therefore, by using multi-criteria decision-making techniques, it is possible to consider various quantitative and qualitative criteria and use the results of expert opinions in weighting the criteria, in which case the final decision will be more consistent with the real conditions in nature.
 
Methodology
In order to monitor and study the geomorphological phenomena related to the Ozgeleh earthquake from the herd, visits were made in several stages of the affected areas. Also, some available documents and published reports and media sources were reviewed during this period. Due to the nature of the subject, the research method is citation, experimental and field observations and descriptive-analytical. The required data were collected in a library manner. Methods of data collection in this research include library study, collection of reports published by the Seismological Research Institute affiliated to the International Institute of Seismology and Earthquake Engineering, observations and field visits. According to the objectives of the study, the effective factors in geomorphological instabilities including lithological age, distance from the fault, slope, altitude, precipitation, distance from the river, distance from the road and land use were selected. To prepare geological age layers and distance from faults from geological maps prepared by the Geological Survey of Iran, from topographic map to prepare slope layers, distance from road, distance from river and altitude, to prepare climate map from statistics Precipitation of synoptic stations, for the preparation of soil layers and land use, the land use map prepared by the Forests and Rangelands Organization has been used. All 9 layers were prepared in GIS environment.
 
Results and discussion
In this study, geomorphological instabilities resulting from Ozgeleh earthquakes in Kermanshah and Ilam were analyzed using the multi-characteristic ELECTERE decision method. The region affected by this earthquake has a high potential for the occurrence of various movements and geomorphological and amplitude instabilities. The first step in this research is to identify various forms of instability such as landslides, rock falls and avalanches, currents, ruptures of hills and landslides that lead to road blockages, destruction of residential houses and ... In the second stage, the identification of various factors affecting the intensification of instabilities includes lithological age, distance from the fault, slope, altitude, precipitation, distance from the river, distance from the road and land use. Finally, the implementation of the area prioritization model is based on the ELECTERE model.
 
Conclusions
The results showed that among the factors affecting the occurrence of instabilities, geological age factors, distance from faults and slopes have the most impact and soil and land use factors have the least impact on creating instabilities in the region. Considering the prioritization of regions in terms of seismic potential that was extracted from the ELECTERE model, Sarpol-e-Zahab region with the highest seismic potential, which is located in the relative seismic hazard classification in the hazard class, has the first priority. The reason for the high seismic risk of this region is the geological structure of the region, its proximity to the main Zagros fault. Also, Dalahou and Javanroud regions are in the second priority by being in the high risk category. The main reason for its seismic potential is the geological structure and frequency of faults and its location on the Zagros fault. In order to validate the model used in the study area, instabilities including landslides, rock falls and avalanches, liquefaction, rupture of hills, flow and mud materials were adapted to each of the danger zones. The results of this adaptation showed that out of 38 known geomorphological instabilities in the region, 18 were in the very high risk category, 11 were in the high risk category, 6 were in the medium risk category and 3 were in the low risk category. have taken. The results of validation of geomorphological instabilities with the zoning map of relative earthquake risk and also compliance with study areas (7 areas) indicate the relatively good performance of the ELECTERE model in zoning and prioritization of areas in study areas. Using this method with similar areas can provide acceptable results.

کلیدواژه‌ها [English]

  • Prioritization
  • Earthquake
  • Sarpolzahab
  • Model
  • Electra
  1. اسدی، سمانه؛ رحیمی، حبیب؛ رضاپور، مهدی و امیری فرد، روح الله (1396) برآورد رابطۀ بزرگای زمین لرزه با استفاده از مدت دوام امواج کدا در پهنۀ زاگرس و جنوب غربی ایران مرکزی، مجله فیزیک زمین و فضا، دوره 43، شماره 1، صص. 22-5.
  2. انتظاری، مژگان و جلیلیان، طاهره (1398) اولویت بندی حوضه های آبخیز از نظر ریسک خطر وقوع زمین لغزش در استان کرمانشاه براساس مدل تصمیم گیری چندمعیاره ELECTRE1- ، نشریه هیدروژئومورفولوژی، دوره 5، شماره 18، صص. 38-19.
  3. بابلی مؤخر، حمید و نگهبان، سعید (1400) بررسی ویژگی های فرمی سطح زمین براساس شاخص های مورفومتری و با استفاده از GIS مطالعه موردی حوضۀ آبخیز فهلیان، جغرافیا )فصلنامه علمی ـ پژوهشی و بین المللی انجمن جغرافیایی ایران(، دوره 19، شماره 68، صص. 117-102.
  4. پرتابیان، عبدالرضا؛ فتوحی، صمد و ریگی، حامد (1396) مقایسه کارایی پهنه بندی خطر زمین لغزش با استفاده از مدل های ارزش اطلاعات و تراکم سطح در استان سیستان و بلوچستان، فصلنامه زمین شناسی کاربردی پیشرفته، دوره 7، شماره 24، صص. 11-1.
  5. پرورش، الیاس؛ مهدوی، رسول؛ ملکیان، آرش؛ اسماعیل پور، یحیی و حلی ساز، ارشک (1397) اولویت بندی عوامل موثر بر پتانسیل سیل خیزی به کمک روش الکتره نوع 3 و ضریب جریان سیلابی (مطالعه موردی زیر حوضه های آبخیز سرخون، بندرعباس)، نشریه خشک بوم، دوره 8، شماره 1، صص. 87-75.
  6. حلبیان، امیرحسین؛ عرب عامری، علیرضا و سلطانیان، محمود (1391) انتخاب بهترین مکان برای احداث سد خاکی با استفاده از روشELECTRE (مطالعه موردی: حوضه آبخیز شاهرود- بسطام)، نشریه جغرافیایی سرزمین، دوره 9، شماره 34، صص. 137-125.
  7. خدابخشی، بهناز و جعفری، حمیدرضا (1389) بررسی کاربرد مدل دسته بندی چند معیاره Electra-TRI در تعیین اهمیت آثار محیط زیستی (مطالعه موردی: ارزیابی آثار محیط زیستی طرح سد و شبکه آبیاری-زهکشی اردبیل)، نشریه پژوهش های محیط زیست، دوره 1، شماره 2، صص. 42-31.
  8. سدیدی، جواد؛ حیدریان، پیمان؛ عزیزی قلاتی، سارا؛ باعقیده، محمد و عبدالملکی، سپیده (1396) روش ترکیبی ELECTRE-FAHP برای ارزیابی تناسب اراضی با رویکرد مکان یابی دفن پسماند در شهر اهواز، نشریه جغرافیا و برنامه ریزی محیطی، دوره 28، شماره 1، صص. 112-99.
  9. سیدمحمدی، جواد؛ جعفرزاده، علی ‌اصغر، سرمدیان، فریدون؛ شهبازی، فرزین و قربانی، محمدعلی (1397) کاربرد روش های ELECTRE TRI و پارامتریک در ارزیابی تناسب بخشی از اراضی دشت مغان برای کشت ذرت تحت آبیاری بارانی، نشریه دانش آب و خاک (دانش کشاورزی)، دوره 28، شماره 2، صص. 137-121.
  10. صادقی، نوشین؛ بزی، خدارحم؛ خواجه شاهکوهی، علیرضا و رضایی، حامد (1396) تحلیل و برآورد آسیب پذیری مساکن شهری در برابر زلزله (مطالعه موردی: شهر گرگان)، آمایش جغرافیایی فضا، دوره 7، شماره 25، صص. 88-73.
  11. صفاری، امیر، حبیبی، علیرضا و غریب رضا، محمدرضا (1392) شاخص های مورفوتکتونیک و زمین لرزه (مطالعه موردی: مناطق پرخطر استان خوزستان)، دومین کنفرانس بین المللی مخاطرات محیطی، تهران، دانشگاه خوارزمی.
  12. صفایی، همایون (1396) ایران میزبان زلزله ای دیگر، نشست تحلیل و بررسی زلزله اخیر غرب کشور (کرمانشاه)، دانشکده علوم زمین، دانشگاه اصفهان، 30 آبان.
  13. عطایی، محمد (1387) انتخاب محل مناسب برای احداث کارخانه آلومینا- سیمان با استفاده از روش الکتر، نشریه بین المللی علوم مهندسی، دوره 19، شماره 9، صص. 63-55.
  14. علوه پناه، سیدکاظم و قربانی، محمدصدیق (1386) نقش سنجش از دور و بررسی های میدانی در تجزیه و تحلیل های مورفوتکتونیکی (مطالعه موردی: زلزله بم)، پژوهش های جغرافیایی، دوره 39، شماره 60، صص. 29-15.
  15. فتوحی، صمد؛ علی نیا، هادی؛ فیروزی، فاطمه؛ بخشی پور، جواد و رخشانی، زینب (1392) مکان یابی مناطق مستعد نسبت به لغزش (مطالعه موردی: شمال نیشابور)، مجله مخاطرات محیط طبیعی، دوره 2، شماره 3، صص. 75-61.
  16. قهرودی تالی، منیژه، پورموسوی، موسی و خسروی، سمیه (1391) بررسی پتانسیل تخریب لرزه خیزی با بکارگیری مدل های چندشاخصه (مطالعه موردی: منطقه 1 شهر تهران)، پژوهش های ژئومورفولوژی کمّی، دوره 1، شماره 3، صص. 68-57.
  17. محمدنژاد، محمد؛ گلی مختاری، لیلا و بهنیافر، ابوالفضل (1398) بررسی نقش توپوگرافی در بزرگسازی اثرات لرزه ای در محدوده شهر کلات نادری، جغرافیا )فصلنامه علمی ـ پژوهشی و بین المللی انجمن جغرافیایی ایران(، دوره 17، شماره 63، صص. 160-143.
  18. مددی، عقیل؛ پیروزی، الناز؛ شکرزاده فرد، الهام (1397) زمین لغزش در پهنه بندی خطر حوضه ی آبخیز آق لاقان چای، با استفاده از مدل ELECTRE، نشریه فضای جغرافیایی، دوره 18، شماره 64، صص. 199-177.
  19. ملماسی، سعید؛ ارجمندی، رضا؛ نزاکتی، رویا و اله داد، زهرا (1395) استفاده از روش ELECTRE در ارزیابی ریسک زیست محیطی پروژه های سدسازی، نشریه علوم و تکنولوژی محیط زیست، دوره 18، شماره 4، صص. 72-52.
  20. نصیری، علی (1395) پهنه بندی خطر زمین لرزه ی منطقه شهری ارومیه، نشریه تحقیقات کاربردی علوم جغرافیایی، دوره 16، شماره 40، صص. 130-113.
  21. Alwa Panah, S. K. & Ghorbani, M. S. (2007) The Role of Remote Sensing and Field Surveys in Morphotectonic Analysis (Case Study: Bam Earthquake), Geographical Research, Vol.39, No.60, pp.15-29. [Persian].
  22. Azadi, S., Rahimi, H., Rezapour, M. & Amirifard, R. (2017) Estimation of earthquake magnitudes using coda wave duration in Zagros zone and southwest in central Iran, Journal of the Earth and Space Physics, Vol.43, No.1, pp.5-22. [Persian].
  23. Atai, M. (2008) Selecting a suitable location for the construction of alumina-cement plant using the Electr method, International Journal of Engineering Sciences, Vol.19, No.9, pp.55-63. [Persian].
  24. Baboli Moakher, H. & Neghaban, S. (2021) Investigation of Fermi characteristics of land surface based on morphometric indices and using GIS Case study of Fahlian watershed, Geography (Iranian Journal of Geographical Association), Vol.19, No.68, pp.102-117. [Persian].
  25. Battarra, M., Balcik, B. & Xu, H. (2018) Disaster preparedness using risk-assessment methods from earthquake engineering. European journal of operational research, Vol.269, No.2, pp.423-435.
  26. Chen, K., Xu, W., Mai, P. M., Gao, H., Zhang, L. & Ding, X. (2018) The 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran: A compact blind shallow-dipping thrust event in the mountain front fault basement. Tectonophysics, Vol.1, No.747, pp.108-114.
  27. Ding, K., He, P., Wen, Y., Chen, Y., Wang, D., Li, S., & Wang, Q., (2018). The 2017 M w 7.3 Ezgeleh, Iran earthquake determined from InSAR measurements and teleseismic waveforms. Geophysical Journal International, Vol.3, No.215, pp.1728-1738.
  28. Entezari, M., Jalilian, T. (2019) Prioritization of watersheds in terms of landslide risk in Kermanshah province based on the multi-criteria decision model ELECTRE1, Hydro geomorphology, Vol.5, No.18, pp. 19-38. [Persian].
  29. Fotouhi, S., Alinia, H., Firoozi, F., Bakhshipour, J. & Rakhshani, Z. (2013) Location of landslide prone areas (Case study: North of Neishabour), Journal of Natural Hazards, Vol.2, No.3, pp. 61-75. [Persian].
  30. Feng, W., Samsonov, S., Almeida., R., Yassaghi, A., Li., J., Qiu, Q., Peng Li, P. & Zheng. W. (2018) Geodetic Constraints of the 2017 M w7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros, Geophysical Research Letters, Vol.45, No.14, pp.6751-7235.
  31. Gombert, B., Duputel, Z., Shabani, E., Rivera, L., Jolivet, R. & Hollingsworth, J. (2019) Impulsive source of the 2017 Mw= 7.3 Ezgeleh, Iran, earthquake. Geophysical research letters, Vol. 46, No. 10, pp. 5207-5216.
  32. Halebian, A. H., Arab Ameri, A. & Soltanian, M. (2012) Selecting the best place for the construction of an earthen dam using the ELECTRE method (Case study: Shahroud-Bastam watershed), Geographical Journal of Sarzamin, Vol.9, No.34, pp.125-137. [Persian].
  33. Khodabakhshi, B. & Jafari, H. (2010) Application of Electra-TRI Multi-Criteria Classification Model in Determining the Importance of Environmental Impacts (Case Study: Evaluation of Environmental Impacts of Ardabil Dam and Irrigation-Drainage Network), Journal of Environmental Research, Vol.1, No.2, pp.31-42. [Persian]
  34. Madadi, A., Pirozi, E. & Shokrzadeh Fard, E. (2018) Landslide in the risk zoning of Aq Laqan Chay watershed, using the ELECTRE model, Journal of Geographical Space, Vol.18, No.64, pp.177-199. [Persian].
  35. Malmasi, S., Arjomandi, R., Nazakati, R. & Allah Dad, Z. (2016) Using ELECTRE method in environmental risk assessment of dam projects, Journal of Environmental Science and Technology, Vol.18, No.4, pp.52-72. [Persian].
  36. Mohammad Mhammanejad, M., Goli Mokhtari, L. & Behniafar, A. (2019) Investigating the role of topography in magnifying seismic effects in the city of Kalat Naderi, Geography (Iranian Journal of Geographical Association), Vol.17, No.63, pp.143-160. [Persian].
  37. Nasiri, A. (2016) Earthquake Hazard Zoning in Urmia Urban Area, Journal of Applied Research in Geographical Sciences, Vol.16, No.40, pp.113-130. [Persian].
  38. Negaresh, H., & Khosravi, M. (2008) The Bam Earthquake Analysis and Its Geomorphological Manifestations and Evidences. The University of Isfahan Journal of Humanities, Vol.30, No.2, pp.1-20.
  39. Ong, M.C., Leong, Y.T., Wan, Y. K. & Chew, I. M. L. (2021) Multi-objective Optimization of Integrated Water System by FUCOM-VIKOR Approach. Process Integration and Optimization for Sustainability, Vol.5, No.1, pp.43-62.
  40. Partabian, A., Fotouhi, S. & Rigi, H. (2017) Comparison of landslide risk zoning efficiency using information value and surface density models in Sistan and Baluchestan province, Quarterly Journal of Advanced Applied Geology, Vol.7, No.24, pp.1-11. [Persian].
  41. Parvaresh, E., Mahdavi, R., Malekian, A., Esmaeilipoor, Y. & Holisaz, A. (2018) Prioritizing of effective factors in flooding potential using ELECTRE IIIMethod and Flood Flow Coefficient (Case study: Sarkhoon Subwatersheds of Bandarabbas), Arid Biome Scientific and Research Journal, Vol.8, No.1, pp.75-87. [Persian].
  42. Qahroudi Tali, M, Pourmousavi, M. & Khosravi, S. (2012) Investigation of seismic degradation potential using multivariate models (Case study: District 1 of Tehran), Quantitative Geomorphological Research, Vol.1, No.3, pp.57-68. [Persian].
  43. Pourmohammad Shahvar, M, Eshaghi, A, Farzannegan, E. & Mirzaei Alavijeh. H. (2019) Shakemaps of Sarpol-e Zahab Earthquake. International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran. [Persian].
  44. Roy, B. (1991) The outranking approach and the foundation of ELECTRE Methods, Theory and Decision, Vol.31, No.1, pp.49-73.
  45. Sadeghi, N., Bezi, Kh., Khajeh Shahkoohi, A. & Rezaei, H. (2017) Analysis and Estimation of Vulnerability of Urban Housing to Earthquake (Case Study: Gorgan City), Spatial Planning, Vol.7, No.25, pp.73-88. [Persian].
  46. Sadidi, J., Heydarian, P., Azizi Qalati, S., Baaqida, M. & Abdul Maliki, S. (2017) ELECTRE-FAHP combined method to evaluate land suitability with waste disposal location approach in Ahvaz, Journal of Geography and Environmental Planning, Vol.28, No.1, pp.99-112. [Persian].
  47. Safaei, H. (2017) Iran hosts another earthquake, recent earthquake analysis and survey meeting in the west of the country (Kermanshah), Faculty of Earth Sciences, University of Isfahan, 30 November. [Persian].
  48. Saffari, A., Habibi, A. & Gharib Reza, M. R. (2013) Morph tectonic and seismic indices (Case study: High risk areas of Khuzestan province), 2nd International Conference on Environmental Hazards, Tehran, Kharazmi University. [Persian].
  49. Sayedmohamadi, J., Jafarzadeh, A., Sarmadian, F., Shahbazi, F. & Ghorbani, M. A. (2018) Application of ELECTRE TRI and parametric methods in assessing the suitability of part of Moghan plain lands for corn cultivation under sprinkler irrigation, Journal of Soil and Water Science (Agricultural Science), Vol.28, No.2, pp.121-137. [Persian].
  50. Solaymani, A, Saboor, S, Moradi, A, Ajhdari, A, Youssefi., T, Mashal, M. & Roustaie, M. (2017) Preliminary report on geological investigations of the Ezgaleh-Kermanshah earthquake (M~7.3),12, West Iran, Website report of the Geological Survey of Iran. ‏
  51. Stiros, S. C. (2019) Intensities of ancient earthquakes, earthquake magnitude and soil dynamics effects. Evidence from the 1750 Croatia earthquake. Geodesy and Geodynamics, Vol.10, No.4, pp.339-345.
  52. Tavani, S., Parente, M., Puzone, F., Corradetti, A., Gharabeigli, G., Valinejad, M., ... & Mazzoli, S. (2018) The seismogenic fault system of the 2017 M w 7.3 Iran–Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration. Solid Earth, Vol.9, No.3, pp.821-831.
  53. Xie, J., Wang, M., Liu, K. & Coulthard, T. J. (2018) Modeling sediment movement and channel response to rainfall variability after a major earthquake. Geomorphology, Vol.1, No.320, pp.18-32.
  54. Yang, C., Han, B., Zhao, C., Du, J., Zhang, D. & Zhu, S. (2019) Co-and post-seismic deformation mechanisms of the MW 7.3 Iran earthquake (2017) revealed by sentinel-1 InSAR observations. Remote Sensing, Vol.11, No.4, pp.418.
  55. Yu, X., Lu, Y. & Cai, M. (2018) Evaluating agro-meteorological disaster of China based on differential evolution algorithm and VIKOR. Natural Hazards, Vol.94, No.2, pp.671-687.
  56. Zamani, A., Sami, A. & Khalili, M. (2012). Multivariate rule-based seismicity map of Iran: a data-driven modeling. Bull. Earthq. Eng. Vol.10, No.6, pp.1667-1683.
  57. Zamani, A., Khalili, M. & A. Gerami. (2011) Computer-based self-organized zoning revisited: scientific criterion for determining the optimum number of zones. Tectonophysics, Vol.510, No.1, pp.207-216.
  58. Zare, M., Kamranzad, F., Parcharidis, I. & Tsironi, V. (2017) Preliminary report of Mw7. 3 Sarpol-e Zahab, Iran earthquake on November 12. EMSC report, 1.
  59. Zhuang, J., Peng, J., Xu, C., Li, Z., Densmore, A., Milledge, D., ... & Cui, Y. (2018) Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, Vol.314, No.1, pp.1-12.