ارزیابی روش های هموارسازی برای بازسازی سری زمانیNDVI و برآورد فنولوژی از داده های ماهواره لندست8

نویسندگان

1 دانشجوی دکترای اقلیم شناسی، دانشگاه اصفهان، اصفهان، ایران.

2 دانشیاراقلیم شناسی، دانشگاه اصفهان، اصفهان، ایران.

3 دانشیارمهندسی نقشه برداری، دانشگاه اصفهان، اصفهان، ایران.

چکیده

سری‌های زمانی شاخص‌های گیاهی سنجش از دورامکان بازیابی فنولوژی گیاهان را در سطح زمین فراهم کرده است، اما این سری‌ زمانی توسط ابرها و رطوبت و هواویزها تحت تأثیر قرارمی‌گیرند و باعث ایجاد نوفه در سیگنال‌های دریافتی سنسورهای ماهواره‌ای می‌شوند. برای بر طرف کردن این مشکل، چندین تابع هموارسازی داده‌ها برای حذف نوفه استفاده می‌شود که به دلیل اختلاف نظر در مورد عملکرد آنها، مقایسه بین آن ها لازم است. پارامترهای فنولوژیکی مشتق شده از ماهواره به طور خاص اطلاعاتی در مورد فنولوژی یک گیاه، گونه ها یا فازهای آن (به عنوان مثال، باز شدن جوانه، ظهور برگ، باز شدن برگ و گلدهی) ارائه نمی‌دهند. شاخص‌های گیاهی سنجش از دور معمولاً قادر به تخمین چند پارامتر فنولوژیکی مانند شروع فصل SOS، پایان فصل EOS هستند. هدف این پژوهش، ارزیابی سه روش هموارسازی سری‌های زمانی، با استفاده از معیارهای آماری، داده‌های درجا و پارامترهای فنولوژی استخراج شده از شاخص تفاضل نرمال شده پوشش گیاهی NDVI حاصل از تصاویر ماهواره لندست 8، از مزرعه کلزا واقع در منطقه فرخ‌شهر استان چهارمحال و بختیاری، است. روش‌های هموارسازی توسط بسته نرم افزاری TIMESAT استفاده شد که شامل روش‌های ساویتزکی- گولی S-G، تابع نامتقارن گاوسی AG و تابع لجستیکی دوگانه DL است. نتایج نشان داد که در صورت استفاده‌ی بهینه از پارامترهای هموارسازی، روش هموارسازی S-G در بازسازی سری‌های زمانی از دقت بیشتری 0/98=r نسبت به سایر روش‌ها برخوردار است. همچنین، نتایج نشان داد که معیار آماری ضریب همبستگی پیرسون در مقایسه با مجذور میانگین مربعات خطا شاخص قوی‌تر برای بازسازی سری‌های زمانی است. در برآورد پارامترهای فنولوژی نیز، تابع هموارساز DL با اختلاف برآورد یک روز برای آغاز فصل SOS و 9 روز برای پایان فصل EOS کمترین میزان خطا را با داده‌های فنولوژی مشاهداتی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Smoothing methods for NDVI Tim-series Reconstruction and phenological Estimation of Landsat 8

نویسندگان [English]

  • Akbar Mirahmadi 1
  • Hojjatolah Yazdanpanah 2
  • Mehdi Momeni Shahraki 3
1 PhD student in Climatology, University of Isfahan, Isfahan, Iran.
2 Associate Professor of Climatology, University of Isfahan, Isfahan, Iran.
3 Associate Professor of Surveying Engineering, University of Isfahan, Isfahan, Iran.
چکیده [English]

 
Extended Abstract
Introduction
Many methods have been developed to identify phenological events based on remote sensing data. Most methods for detecting phenological events involve two basic steps; (1) Generate time series from satellite data (2) Use time series to determine phenological events based on relational sets. The first step involves building the time series of each indicator based on remote sensing data and smoothing the data to reduce noise and produce a smoother time series. But this time series is affected by clouds, humidity, and weather, disrupting the signals received by satellite sensors. Many time series reconstruction methods have been used to reconstruct disturbed satellite signals. Recently, widely used methods such as Savitsky-Goli filter (S-G), least squares for Gaussian asymmetric functions (AG), and Double logistics (DL) functions have been used. In previous studies, many researchers have concluded that the performance of smoothing methods in estimating plant phenology, spatially and temporally, due to bias and random errors due to clouds and plant type and physical conditions of the environment, no single method of performance Does not display superior. The purpose of this study is to evaluate three time series smoothing methods, using statistical criteria and phenological parameters extracted from the NDVI Index obtained from Landsat 8 satellite images.
 
Methodology
In this study, phenological parameters of the start of season (SOS) and end of season (EOS) for rapeseed vegetation growing season in Chaharmahal and Bakhtiari province, Farokhshhar region obtained from observational data and NDVI index of Landsat 8 satellite images in the period 2018-2016 were used. To smooth the data and extract the phenological parameters of the beginning of the season and the end of the season of satellite images, Savitsky-Goli filter, least squares for Gaussian asymmetric functions (AG) and double logistic functions (DL) in TIMESAT software were used. In all methods, the adaptation to upper envelope with the raw NDVI time series was used to reduce bias. In the Savitsky-Goli method, in addition to adapting upper envelope, the window size parameter (r) was also used. Pearson correlation coefficient and root mean square error (RMSE) were used to compare the output of time series of smoothing functions and raw time series of NDVI.
 
Results and Discussion
Statistical evaluation of smoothed time series
Statistical analysis of the output of smoothing functions showed that the time series produced by the S-G model compared to the raw time series of the NDVI index had the lowest root mean square error (RMSE = 0.342) and the highest correlation (r = 0.98) belong to S-G model. The advantage of DL and AG models is that the difference between the mean correlation coefficient for all performances and the correlation coefficient for the best execution is small and it can be inferred that the software parameter settings have little effect on the outputs of these models. After plotting the smoothed time series curves, the results showed that the use of smoothing models effectively eliminated noise and disturbed the raw time series of the NDVI index, and reconstructed smoother and softer time series. The results also showed that time series that have a higher correlation coefficient show more details and changes within the inter-seasonal, such as the recession stage (dormancy).
Evaluation of smoothed time series in estimating phenological parameters
The results showed that in estimating the start and end of the season (SOS / EOS), the output of DL model is more accurate than the output of S-G and AG models. Compared to observational data, the output of all models has a time delay in estimating the EOS. Overall, the DL model performed better in estimating the SOS and EOS phenology parameter with 1 and 9 day difference with observational data respectively.
In this study, we showed to what extent the time series of the three smoothing methods SG, AG and DL in the reconstruction of the raw time series of the NDVI from the Landsat 8 and estimating the phenological parameters of the start and end of the season are accurate. The results of this study showed that the adaptive S-G model is more robust for reconstructing raw time series than AG and DL functions, and this is due to the sensitivity of this model to small changes in the NDVI time series. The AG and DL functions tend to eliminate noise at the peaks and bottoms of the time series. The results also showed that the time series with the highest correlation coefficient (r) are more suitable for reconstructing the raw time series of the NDVI index compared to the time series that produced the smallest RMSE. The DL model performed better in estimating the SOS and EOS phenology parameter. In SOS estimation, the S-G model performs worse than the AG and DL functions. The efficiency of any smoothing method depends on the choice of parameters. For example, the use of adaptation upper envelope generally improves the results. AG and DL fitting function methods are the preferred option for smoothing low quality data (eg high noise and high data loss) due to less sensitivity to regulatory parameters. The AG and DL fitting functions are limited when giving inter-seasonal details of the time series curve. Numerous factors such as vegetation index selection, satellite sensor data and vegetation type are affected in evaluating time series and estimating phenological parameters. However, the results of this study are valid for the data and the location under study, and the results may vary with other data or under other circumstances.
 
Conclusions
This study showed that the statistical criterion of Pearson correlation coefficient (r) is superior to the root mean square error (RMSE) and the S-G model is superior to the AG and DL models for reconstruction of time series and the DL function show the best performance for estimating SOS and EOS phenological parameters.

کلیدواژه‌ها [English]

  • Start of the season (SOS)
  • End of the season (EOS)
  • Smoothing methods
  • NDVI
  • TIMESAT
  1. اسکندری دامنه، حامد؛ زهتابیان، غلامرضا؛ خسروی، حسن؛ آذرنیوند، حسین و براتی، علی اکبر (1398) شبیه سازی و پیش­بینی مؤلفه های اقلیمی دما و بارش در مناطق خشک (مطالعه موردی: دشت میناب)، جغرافیا، دوره 17، شماره 62، صص. 127-110.
  2. رایگانی، بهزاد؛ ارزانی، حسین؛ حیدری علمدارلو، اسماعیل و مقدمی، محمد مهدی (1398) کاربرد سنجش از دور به منظور ارزیابی تغییر اقلیم بر تولید و فنولوژی گیاهان (منطقه مورد مطالعه: استان تهران)، مرتع، دوره 13، شماره 3، صص. 460-449.
  3. ریگی، منصور؛ پیری­صحراگرد، حسین؛ دهمرده قلعه نو، محمدرضا و شهرکی، ابراهیم (1397) ارزیابی تغییرات کاربری اراضی با استفاده از داده های سنجش از دور (مطالعه موردی: حوزه آبخیز نوک­آباد، شهرستان خاش)، جغرافیا، دوره 16، شماره 59، صص. 204-191.
  4. زارع خورمیزی، هادی و غفاریان مالمیری، حمیدرضا (1399) بررسی تغییرات مؤلفه­های فنولوژی پوشش گیاهی ایران در پاسخ به تغییرات اقلیمی با استفاده از NDVI سنجنده AVHRR در دوره زمانی 1982 تا 2018،سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، دوره 11، شماره 4، صص. 113-87.
  5. زنگنه، مهدی؛ صفایی، محمدجواد و سمیعی، مریم ( 1398) کنکاشی بر رویکرد توانمندسازی جهت ساماندهی سکونتگاه­های غیر رسمی(نمونه موردی: شهرتربت حیدریه)، جغرافیا، ، دوره 17، شماره 62، صص. 205-191.
  6. قمقامی، مهدی؛ قهرمان، نوذر؛ قربانی، خلیل و ایران نژاد، پرویز (1396) کاربرد تصاویر ماهواره‌ای چند زمانه در بهبود دقت مدل‌های پیش‌یابی فنولوژی ذرت، تحقیقات آب و خاک ایران, دوره 48، شماره 1، صص. 24-11.
  7. کرمپور، مصطفی؛ طولابی نژاد، میثم و عینی، سعیده (1398) پایش و پیش بینی خشکسالی طی دوره رشد پوشش مرتع
    نمونه موردی: حوضه آبخیز قوری چای (شهرستان پارس آباد مغان)، جغرافیا، دوره17، شماره60، صص. 214-203.
  8. نساجی­زواره، مجتبی؛ خانجانزاده کاکرود، رسول و قاسمی، ایرج (1395) تلفیق داده اقلیمی و سنجش از دوری به منظور پایش وضعیت خشکیدگی بلوط (مطالعه موردی منطقه ایلام )، جغرافیا، دوره 14، شماره 51، صص. 397-387.
  9. Atkinson, P.M., Jeganathan, C., Dash, J. & Atzberger, C. (2012) Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote sensing of environment, Vol. 30, No.123, pp. 400-417.‏
  10. Beck, P.S., Atzberger, C., Høgda, K.A., Johansen, B. & Skidmore, A.K. (2006) Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote sensing of Environment, Vol. 100, No.3, pp. 321-334.‏
  11. Bornez, K., Descals, A., Verger, A.,& Peñuelas, J. (2020) Land surface phenology from VEGETATION and PROBA-V data. Assessment over deciduous forests. International Journal of Applied Earth Observation and Geoinformation, No.84, 101974.‏
  12. Bradley, B. A., Jacob, R. W., Hermance, J. F. & Mustard, J. F. (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data, Remote sensing of environment, Vol.106, No.2, pp.137-145.‏
  13. Cai, Z., Jönsson, P., Jin, H., & Eklundh, L. (2017) Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data, Remote Sensing, Vol. 9, No.12, 1271.‏
  14. Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote sensing of Environment, Vol.91, No.3-4, pp.332-344.‏
  15. Chen, W., Foy, N., Olthof, I., Latifovic, R., Zhang, Y., Li, J., ... & Stewart, H. M. (2013) Evaluating and reducing errors in seasonal profiles of AVHRR vegetation indices over a Canadian northern national park using a cloudiness index, International Journal of Remote Sensing, Vol.34, No.12, pp.4320-4343.‏
  16. Cong, N., Wang, T., Nan, H., Ma, Y., Wang, X., Myneni, R. B. & Piao, S. (2013) Changes in satellite‐derived spring vegetation green‐up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis, Global change biology, Vol. 19, No.3, pp.881-891.‏
  17. Eklundha, L. & Jönsson, P. (2017) TIMESAT 3.3 with seasonal trend decomposition and parallel processing Software Manual, Lund and Malmo University, Sweden, Retrieved from http://www.nateko.lu.se/TIMESAT/ 2017- 05-29.
  18. Eskandari Damaneh, H., Zehtabian, G., Khosravi, H., Azarnivand, H. & Barati, A. A. (2019) Simulation and forecasting of climatic components of temperature and precipitation in arid regions (Case study: Minab plain), Geography, Vol. 17, No. 62, p. 110-127. [Persian]
  19. Geng, L., Ma, M., Wang, X., Yu, W., Jia, S. & Wang, H. (2014) Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China, Remote Sensing, Vol.6, No.3, pp.2024-2049.‏
  20. Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., ... & Nightingale, J. (2008) An algorithm to produce temporally and spatially continuous MODIS-LAI time series, IEEE Geoscience and Remote Sensing Letters, Vol.5, No.1, pp. 60-64.‏
  21. Goward, S. N., Markham, B., Dye, D. G., Dulaney, W. & Yang, J. (1991) Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer, Remote sensing of environment, Vol. 35, No. 2-3, pp. 257-277.‏
  22. Hanes, J. M., Liang, L. & Morisette, J. T. (2014) Land surface phenology, In Biophysical applications of satellite remote sensing, Springer, Berlin, Heidelberg.‏
  23. Hird, J. N. & McDermid, G. J. (2009) Noise reduction of NDVI time series: An empirical comparison of selected techniques, Remote Sensing of Environment, Vol.113, No.1, pp.248-258.‏
  24. Kandasamy, S., & Fernandes, R. (2015) An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data over Canada, Remote Sensing of Environment, No.164, pp. 114-129.‏
  25. Karkauskaite, P., Tagesson, T. & Fensholt, R. (2017) Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone, Remote Sensing, Vol.9, No. 5, pp.485.‏
  26. Karampour, M., Tulabi Nejad, M. & Eini, S. (2019) Drought monitoring and forecasting during the growth period of rangeland cover Case study: Ghori Chay watershed (Pars Abad Moghan), Geography, Vol.17, No. 60, pp. 203-214. [Persian]
  27. Kowalski, K., Senf, C., Hostert, P. & Pflugmacher, D. (2020) Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series, International Journal of Applied Earth Observation and Geoinformation, No.92, 102172.‏
  28. Jonsson, P. & Eklundh, L. (2002) Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE transactions on Geoscience and Remote Sensing, Vol.40, No.8, pp.1824-1832.‏
  29. Jönsson, P., & Eklundh, L. (2004) TIMESAT—a program for analyzing time-series of satellite sensor data, Computers & geosciences, Vol.30, No. 8) pp. 833-845.‏
  30. Lara, B., & Gandini, M. (2016) Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland, International Journal of Remote Sensing, Vol. 37, No.8, pp.1801-1813.‏
  31. Ma, X., Huete, A., Yu, Q., Coupe, N. R., Davies, K., Broich, M., ... & Eamus, D. (2013) Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect, Remote sensing of Environment, Vol.139, pp. 97-115.‏
  32. Melaas, E.K., Friedl, M.A. & Zhu, Z. (2013) Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, Remote Sensing of Environment, No.132, pp. 176-185.‏
  33. Nasaji Zavareh, M., Khanjanzadeh Kakrood, R. & Ghasemi, I. (2016) Combining Climatic Data and Remote Sensing to Monitor the Oak Drought Status (Case Study of Ilam Region), Geography, Vol.14, No. 51, pp. 387-397. [Persian]
  34. Qomqami, M., Ghahrman, N., Ghorbani, K. & Irannejad, P. (2017) Application of Multi-Time Satellite Images in Improving the Accuracy of Corn Phenology Prediction Models, Iranian Soil and Water Research, Vol. 48, No 1, pp. 11-24. [Persian]
  35. Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N. & Ohno, H. (2005) A crop phenology detection method using time-series MODIS data, Remote sensing of environment, Vol.96, No.3-4, pp. 366-374.‏
  36. Shao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S. & Campbell, J.B. (2016) An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data, Remote Sensing of Environment, No.174, pp. 258-265.‏
  37. St Peter, J., Hogland, J., Hebblewhite, M., Hurley, M. A., Hupp, N. & Proffitt, K. (2018) Linking phenological indices from digital cameras in Idaho and Montana to MODIS NDVI, Remote Sensing, Vol.10, No.10, 1612.‏
  38. Raygani, B., Arzani, H., Heidari Alamdarloo, I.. & Moghaddami, M.M. (2019) Application of remote sensing to assess climate change on plant production and phenology (Study area: Tehran province), Range, Volume 13, No 3, pp. 450-460. [Persian].
  39. Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., ... & Xue, Y.(2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis, Global Change Biology, 18(2),pp.566-584.‏
  40. Rigi, M., Piri Sahragard, H., Dehmardeh Ghaleh Nou, M.R. & Shahraki, E. (2018) Evaluation of land use changes using remote sensing data (Case study: Nokabad watershed, Khash city), Geography, 16th year, No. 59, pp. 191-204. [Persian].
  41. White, M. A., de Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., ... & Lauenroth, W. K. (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006, Global Change Biology, Vol.15, No.10, pp. 2335-2359.‏
  42. You, X., Meng, J., Zhang, M. & Dong, T. (2013) Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method, Remote Sensing, Vol.5, No.7, pp. 3190-3211.‏
  43. Zhou, L., Zhou, W., Chen, J., Xu, X., Wang, Y., Zhuang, J. & Chi, Y. (2022) Land surface phenology detections from multi-source remote sensing indices capturing canopy photosynthesis phenology across major land cover types in the Northern Hemisphere, Ecological Indicators, No. 135, 108579.‏
  44. Zhu, L. & Meng, J. (2015) Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas, International journal of biometeorology, Vol.59, No.2, pp. 237-248.‏
  45. Zanganeh, M., Safaei, M.J. & Samiei, M. (2019) A study on the empowerment approach for organizing informal settlements (Case study: Torbat-e Heydarieh), Geography, Vol.17, No. 62, p. 191-205. [Persian].
  46. Zare Khormizi, H. & Ghaffarian Malmiri, H. (2020) Investigation of changes in vegetation phenology components of Iran in response to climate change using NDVI AVHRR sensor in the period 1982 to 2018, remote sensing and GIS in natural resources, Vol.11, No. 4, pp. 87-113. [Persian].