برآورد پهنه آبی دریاچه ارومیه با استفاده از تصاویر ماهواره ای لندست8 با استفاده از شاخص MNDWI

نوع مقاله : علمی - پژوهشی

نویسنده

استادیار گروه علوم انسانی و اجتماعی، دانشگاه فرهنگیان،تهران، ایران.

چکیده

پایش و استخراج تغییرات سطح آب دریاچه ارومیه درطول سال های اخیر مورد توجه واقع شده است. یکی از ابزارهای موثر در زمینه تغییرات خط ساحلی ومساحت آن، استفاده از فناوری سنجش از دور و بهره گیری از داده های ماهواره ای است. استفاده از تصاویر ماهواره ای به دلیل پوشش وسیع مکانی، قدرت تفکیک بالا، هزینه کم، آرشیو زمانی، دسترسی رایگان به تصاویر ماهواره ای و وجود نرم افزارهای کاربردی و شاخص های طیفی کاربردی، اهمیت فراوانی در مطالعات برآورد مساحت پهنه های آبی پیدا کرد. حداکثر سطح دریاچه ارومیه در دوران پرآبی در حدود 6100 کیلومترمربع ارزیابی شده است؛ با این حال، وسعت دریاچه ارومیه درطول سال های اخیر کاهش محسوسی داشته است. تبدیل دریاچه به پلایا؛ زمین های کشاورزی، باغات و شهرهای اطراف دریاچه را تهدید نموده است؛ و بزرگترین زیست گاه آرتمیا از بین رفته و معظلات اقلیمی، اقتصادی و اکولوژیک در منطقه ایجاد گردید. در این مقاله از تصاویر ماهواره ای لندست8 برای برآورد نسبی مساحت دریاچه ارومیه مورد استفاده قرار گرفته است. شاخص های طیفی مختلفی برای پهنه های آبی وجود دارد، شاخصی که برای پهنه های آبی دریاچه ارومیه مورد استفاده قرار گرفت، شاخصMNDWI می باشد. جهت بررسی مساحت دریاچه ارومیه، خروجی Shipe File در ENVI انجام شد. فایل خروجی شیب فایل درArc Map فراخوانی شد و مساحت دریاچه ارومیه برحسب کیلومترمربع محاسبه شد. با توجه به تصاویر ماهواره ای لندست با مقادیرROI بین 1تا 0/2 درصد، مساحت دریاچه ارومیه در تاریخ اخذ تصاویرکه مربوط به 20/05/2021 دانلود گردید، 844/3107 کیلومترمربع برآورد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Lake Urmia water area using Landsat 8 satellite imagery using MNDWI Index

نویسنده [English]

  • Mohammadreza Yousefiroshan
Assistant Professor, Department of Humanities and Social Sciences, Farhangian University, Tehran, Iran.
چکیده [English]

 
Extended Abstract
Introduction
Remote sensing is the science and art of obtaining information about the earth's surface without physical contact with it. This is done by measuring and recording the energy reflected or emitted from the ground and processing, analyzing and using this information. One of the effective tools in the field of environmental studies and earth sciences is the use of remote sensing technology and the use of satellite data. Today's measurement technology has made it possible for geoscientists to use satellite imagery and the processing that takes place on these images to provide the information needed to better understand and detect changes in the human environment. Identify the planet Earth. Monitoring and extraction of changes in the water level of Lake Urmia in recent years has been considered. One of the effective tools in the field of shoreline changes and its area is the use of remote sensing technology and the use of satellite data. The use of satellite imagery due to its large spatial coverage, high resolution, low cost, time archive, free access to satellite imagery and the existence of applications and applied spectral indicators, became very important in studies of estimating the area of ​​water areas.
 
Methodology
In this paper, the water area of ​​Lake Urmia was calculated by remote sensing and processing of satellite images. Images of the Landsat 8 satellite with pass number 169 and row number 34, which corresponded to 20/05/2021 at 7:38:14, were downloaded from the website of the United States Geological Survey https://earthexplorer.usgs.gov. The Landsat satellite has two imaging sensors. One is the OLI sensor and the other is the TIRS sensor. The OLI sensor has 9 spectral bands in the visible and infrared reflectance range. The TIRS sensor also has two thermal bands. After downloading the Landsat 8 satellite images, it was cut in ENVI software version 3.5 of the Urmia Lake area. The error of the satellite images was eliminated radiometrically and geometrically. In order to improve the spatial resolution of the study area, the 30-meter pixel image was converted to a 15-meter pixel size to improve the resolution of the study area, then atmospheric correction was applied to the satellite image. There are different spectral indices for water zones, the index that was used for the water zones of Lake Urmia is the Modified Normalized Difference Water Index (MNDWI). To investigate the area of ​​Lake Urmia, the output of Shipe File was done in ENVI. The output file of the file slope was called in Arc Map and the area of ​​Lake Urmia was calculated in terms of square kilometers.
 
 
 
Results and Discussion
One of the methods used in remote sensing to identify phenomena is the use of spectral index. Many studies and researches have been done in the past that the water zone has been separated from other phenomena. The NDWI Index, also known as the Water Index, was first introduced by Gao in 1995. Another indicator was later used in 2005 by Denison et al. To measure plant moisture. A year later, McFithers (1996) introduced NDWI, a combination of green and near-infrared bands, in another study on the separation and detection of blue zones. In 2003, Chen et al. In a study of plant moisture content presented a new indicator that combines near-infrared and short-wavelength infrared bands. In 2006, with a slight change from previous algorithms, Zhou replaced the mid-infrared band with the near-infrared band and introduced a new indicator. The corrected NDWI index presented by Zhou has been used in various studies only in the field of identification and extraction of water areas. Index (MNDWI) separates the Urmia Lake area from other coverings. In this index, there is water in some places. Its NDWI value is different from the places where it is white and wet salt marshes. In the water zone, the index reaches 0.99, but in wet salt marshes it reaches 0.6. Is higher. In this index, the positive numbers are between (0.6-1) water areas, the numbers are 0 and negative are other vegetation. The spectral behavior of water is different from other indicators, it has the highest amount of reflection in the blue band, from the blue band to longer wavelengths, ie infrared, it increases the absorption rate, and consequently the reflection decreases.
 
Conclusion
To investigate the area of Lake Urmia, the output of Shipe File was done in ENVI. The output file of the file slope was called in Arc Map and the area of Lake Urmia was calculated in terms of square kilometers. According to Landsat satellite images with ROI values between 1 to 0.2 percent, the area of Lake Urmia on the date of the images, which were downloaded on 20/05/2021, has been calculated to be 3,107,844 square kilometers.


کلیدواژه‌ها [English]

  • Blue Zone
  • Lake Urmia Satellite Images
  • Landsat 8
  • MNDWI Index
  1. آقانباتی، سیدعلی (1389). زمین شناسی ایران، چاپ سوم، تهران: ناشر سازمان زمین شناسی و اکتشافات معدنی کشور.
  2. آل شخ، علی اصغر، علی محمدی، عباس، قربانعلی، علی(1384). پایش خطوط ساحلی دریاچه ارومیه با استفاده از سنجش از دور، نشریه علوم جغرافیایی، شماره4، صص. 24-9.
  3. احراری، امیرحسین، مهدی پور، احسان و عمادزاده، مریم (1395). برآورد مساحت سطحی دریاچه ارومیه طی سال های 1395-1392 با استفاده از تصاویر ماهواره لندست8، سند یادداشت فنی، دانشگاه صنعتی شریف، مرکز تحقیقات سنجش از دور.
  4. برنامه ی مدیریت جامع دریاچه ارومیه «حفط تالاب ها، برای مردم، برای طبیعت (1389). تهیه شده با همکاری سازمان های دولتی، تشکل های زیست محیطی و جوامع محلی حوضه ی آبریز دریاچه ارومیه، صص. 75-1.
  5. خدمت زاده، علی، نجف زاده، آیلار و عظیمی، فرناز (1399). پایش تغییرات سطح آب دریاچه ارومیه با استفاده از تصاویر ماهواره ای، مجله نخبگان علوم و مهندسی، دوره5، شماره1، صص. 50-43.
  6. دانلود تصاویر ماهواره ای لندست8 و سنتینل2 از سایت https://earthexplorer.usgs.gov
  7. رسولی، علی اکبر، عباسیان، شیرزاد، جهانبخش اصل، سعید (1386). نوسانات سطح آب دریاچة ارومیه با پردازش ماهواره ای چند سنجنده ای و چندزمانه ای، فصلنامه مدرس علوم انسانی، دوره12، شماره2، صص. 67-54.
  8. فیضی زاده، بختیار، حاجی میررحیمی، سیدمحمود (1387). آشکار سازی تغییرات کاربری ارا ضی با ا ستفاده از روش طبقه بندی شیء گرا (مطالعه موردی: شهرک اندیشه) همایش ژئوماتیک، صص. 10-1.
  9. علایی طالقانی، محمود (1381). ژئومورفولوژی ایران، چاپ اول، نشر: قومس.
  10. علوی پناه، کاظم (1389). کاربرد سجش از دور در علوم زمین، انتشارات: دانشگاه تهران، چاپ سوم.
  11. مرکز سنجش از دور کانادا (1398). مبانی سنجش از دور کاربردی، ترجمه ولیزاده کامران، خلیل و مهدوی فرد، مصطفی، تهران: انتشارات ماهواره.
  12. ناظری تهرودی، محمد، احمدی، فرشاد و خلیلی، کیوان (1396). بررسی روند و زمان تغییر روند بارش حوضه دریاچه ارومیه، نشریه آب و خاک (علوم و صنایع کشاورزی) دوره 31، شماره 2، صص. 659-644.
  13. یوسفی روشن، محمدرضا و یوسفی روشن، علی (1400). برآورد پهنه آبی سد لار با استفاده از تصاویر ماهواره ای لندست۸ با استفاده از شاخص MNDWI، دومین کنفرانس بین المللی علم اطلاعات جغرافیایی بنیادها و کاربردهای بین رشته ای، مشهد، صص. 818-809.
  14. Alaei Taleghani, M. (2002). Geomorphology of Iran, first edition, published by Qoms. [Persian].
  15. Alavipanah, K. (2009). Application of Remote Sensing in Earth Sciences, Publications: University of Tehran, 3rd edition. [Persian].
  16. Aganbati, Seyyed, A. (2009). Geology of Iran, third edition, Tehran: Publisher of Geology and Mineral Exploration Organization of the country. [Persian].
  17. Al-Shakh, A, & Ali Mohammadi, A. & Gurban Ali, A. (1995). Monitoring the shorelines of Lake Urmia using remote sensing, Journal of Geographical Sciences, No. 4, pp. 24-9. [Persian].
  18. Ahrari, A. & Mehdipour, E. & Emadzadeh, M. (2016). Estimating the surface area of Lake Urmia during the years 2015-2016 using Landsat 8 satellite images, technical note document, Sharif University of Technology, Remote Sensing Research Center. [Persian].
  19. Canadian Remote Sensing Center (2018). Fundamentals of Applied Remote Sensing, translated by Valizadeh Kamran, K, & Mahdavi Fard, Mostafa, Tehran: Satellite Publications. [Persian].
  20. Chen, D., Jackson Li, F., Cosh, M., Walthall, C. & Anderson, M. (2003). Estimation of vegetation water conten, T.t for corn and soybeans with a normalized difference water index (NDWI) using Landsat Thematic Mapper data. In, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, pp. 2853-2856: IEEE.
  21. Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J. & Picard, G. (2005). Determination of phenological dates in boreal regions using normalized difference water index, Remote Sensing of Environment, Vol. 24, No.97, pp.26-38.
  22. Dennison, P. E., Roberts, D., Peterson, S. & Rechel, J. (2005).Use of normalized difference water Index for monitoring live fuel moisture. International Journal of Remote Sensing. Vol.7, No.26, pp. 1035-1042.
  23. Nearest neighbor classification techniques; IEEE Computer Society,1991.
  24. Download Landsat 8 and Sentinel 2 satellite images from https://earthexplorer.usgs.gov. [Persian].
  25. Estallo, E.L., Ludueña-Almeida, F.F., Visintin, A.M., Scavuzzo, C.M., Lamfri, M.A., Introini, M.V., Zaidenberg, M. & Almirón, W.R. (2012). Effectiveness of normalized difference water index in modelling Aedes aegypti house index. International Journal of Remote Sensing,Vol.8, No.33, PP.4254-4265.
  26. Faizizadeh, B. & Haji Mirrahimi, M. (2007). Revealing land use changes using the object-oriented classification method (case study: Andisheh settlement) Geomatic Conference, pp. 1-10. [Persian].
  27. Hüttich, C., Herold, M., Schmullius, C., Egorov, V. & Bartalev, S. (2006). SPOT-VGT NDVI and NDWI trends 1998-2005 as indicators of recent land cover change processes in northern Eurasia. In, 2nd workshop of the EARSEL SIG on land use and land cover, Bonn (pp. 336-344).
  28. Pengra, B. (2012). The Drying of Iran Lake Urmia and its Environmental Conseqences. Article reproduced from United Nations Environment Programme (UNEP) Global Environmental Alert Service (GEAS), Environmental Development 2,128-137.
  29. Haibo, Y., Zongmin, W., Hongling, Z., & Yu, G. (2011). Water body extraction methods study based on RS and GIS. Procedia Environmental Sciences, 10, 2619-2624.
  30. Li, M., Xu, L., & Tang, M. (2011). An extraction method for water body of remote sensing image based on oscillatory network. Journal of Multimedia, 6, 252-260.
  31. Liu, Y. (2012). Why NDWI threshold varies in delineating water body from multitemporal images? In, 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 4375-4378): IEEE.
  32. Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13, 428-434.
  33. McFeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425-1432.
  34. Macleod, R. S & R. G. Congalton,; a quantitative comparison of change detection algorithms for monitoring eelegrass from remotely sensed data. Photogrammetri and Remote Sensing of Environment,Vol. 8, 1998, 207-216.
  35. Ouma, Y.O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27, 3153-3181.
  36. Singh, A., (1989). Digital change detection techniques using remotely sensed data, International Journal of Remote Sensing, 10(6), 999-1003.
  37. Singh, K.V., Setia, R., Sahoo, S., Prasad, A., & Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30, 650-661.
  38. Subramaniam, S., Babu, A.S. & Roy, P.S. (2011). Automated water spread mapping using ResourceSat-1 AWiFS data for water bodies information system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 205-215.
  39. Singh, A., (1989). Digital change detection techniques using remotely sensed data, Int J. R. S.Vol.10, No. 6.
  40. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 3025-3033.
  41. Zhao, L., Yu, H. & Zhang, L. (2009). Water body extraction in urban region from high resolution satellite imagery with Near-Infrared Spectral Analysis. In, International Symposium on Photoelectronic Detection and Imaging 2009, pp.738331-73836, International Society for Optics and Photonics.
  42. Ucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, Vol.8, No.2, pp.150-127.
  43. Urmia Lake Comprehensive Management Program "Protection of wetlands, for people, for nature" (2009). Prepared in collaboration with government organizations, environmental organizations and local communities of the Urmia Lake catchment, pp. 75-1. [Persian].
  44. Khemtizadeh, A, & Najafzadeh, A. & Azimi, F. (2019). Monitoring the water level changes of Lake Urmia using satellite images, Elite Journal of Science and Engineering, Vol.5, No. 1, pp. 50-43. [Persian].
  45. Nazeri Tehrodi, M., Ahmadi, F. & Khalili, K. (2016). Investigating the trend and time of change in the precipitation trend of Lake Urmia basin, Water and Soil Journal (Agricultural Sciences and Industries), Vol.31, No. 2, Khordad-Tir 2016, pp. 659-644. [Persian].
  46. R Soli, A, & Abbasian, S, , & Jahanbakhsh Assal, S. (2006). Fluctuations in the water level of Lake Urmia with multi-sensor and multi-temporal satellite processing, Modares Humanities Quarterly, Vol.12, No. 2, pp. 54-67. [Persian].
  47. Yousefiroshan, M. & Yousefi Roshan, A. (2021). Estimation of water area of Lar Dam using Landsat8 satellite images using MNDWI index, Second International Conference on Geographical Information Science Foundations and Interdisciplinary Applications, Mashhad, pp. 818-809. [Persian].