مقایسه‌ میزان تأثیرپذیری جزایر حرارتی از وقوع امواج گرمایی در شهرهای کرمانشاه و ایلام

نوع مقاله : مقاله مستخرج از رساله دکتری

نویسندگان

1 دانشجوی دکترای جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 استاد جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 دکترای آب و هواشناسی، دانشکدۀ منابع طبیعی، دانشگاه کردستان، سنندج، ایران.

چکیده

در مناطق شهری، جزیره حرارتی تحت تأثیر امواج گرمایی تشدید می‌گردد و ممکن است بر سلامت و رفاه ساکنان شهری تأثیر منفی بگذارد. به منظور مقایسه‌ میزان تأثیرپذیری جزایر حرارتی از وقوع امواج گرمایی در شهرهای کرمانشاه و ایلام، داده‌های حداکثر دمای شهرهای مورد مطالعه طی سال‌های 2003 تا 2018 بررسی شد و روزهایی توأم با موج گرمایی در محیط نرم افزار متلب و با شاخص فومیاکی تعیین شدند. جهت برآورد میزان تأثیرپذیری جزایر حرارتی از وقوع امواج گرمایی طی دوره‌ مورد مطالعه، امواج گرم در ماه‌های گرم سال انتخاب و جزایر حرارتی برای آن روزها و یک روز بدون موج گرمایی با کمترین دمای حداکثر قبل از هر موج گرمایی در روز هنگام و شب هنگام مودیس- آکوا برای هر دو شهر محاسبه شد. طبق نتایج، حداکثر تداوم موج گرمایی در کرمانشاه 4 روزه و کوتاه مدت ولی در ایلام 6 روزه و بلند مدت بوده است. بیشترین فراوانی موج گرما در هر دو شهر در سال 2010 و در ماه مارس بوده. براساس یافته‌های پژوهش، در روز هنگام در هر دو شرایط وجود و عدم موج گرمایی جزیره سرمایی در مراکز هر دو شهر وجود داشته که با وقوع موج گرما اغلب شدت جزیره سرمایی بیشتر شده است. در شب هنگام، اگرچه در هر دو شرایط وجود و عدم موج گرمایی اغلب در مراکز هر دو شهر جزیره‌ گرمایی هرچند ضعیف ایجاد شده، ولی میزان تأثیرپذیری جزایر گرمایی از وقوع امواج گرمایی در کرمانشاه حداکثر 8/2 درجه سلسیوس و در ایلام اغلب کمتر از 1 درجه سلسیوس بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison the Impact rate of thermal islands of the occurrence of heat waves In Kermanshah and Ilam cities

نویسندگان [English]

  • Roghayeh Maleki Meresht 1
  • Behrouz Sobhani 2
  • Masood Moradi 3
1 PhD student in Natural Geography, Faculty of Social Sciences, Mohaghegh Ardabili University, Ardabil, Iran.
2 Professor of Natural Geography, Faculty of Social Sciences, Mohaghegh Ardabili University, Ardabil, Iran.
3 Ph.D. of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
چکیده [English]

Extended Abstract
Introduction
In urban regions, thermal islands are exacerbated by the heat waves (HWS) effect, and it has the potential to negatively influence the health and welfare of urban residents. Scientists predict that heat waves will intensify and become more persistent in the coming years due to climate change. As a result, the likelihood of these two phenomena occurring simultaneously will increase in the coming years, even in small, non-industrial cities. Therefore, the purpose of this study is to compare the impact rate of thermal islands from the occurrence of heat waves in Kermanshah and Ilam cities from 2003 to 2018 and It is tried to determine under the conditions of heat waves, Which of the studied cities and at what time of the day the intensity of urban heat islands has increased?
 
Methodology
 In order to identify and extract heat waves, the maximum daily temperature data of Kermanshah and Iilam stations, from 2003 to 2018, by using Fumiaki Index and MATLAB software, days whit temperature above +2 standard deviation or above the mean Normalized Thermal Deviation (NTD) that lasted at least two days, were identified as the day with HWs and calculated by equation 1:
                                                                                                                                                                     (1)
Where T (i, j, n) temperature of day i th from month j th in year n th,  the average temperature of day i from month j. To eliminate the noise in the mean, a 9-day moving average filter was performed on these data three times and calculated by equation 2:
                                                                                                                                                                 (2)
Where ∆T= (i, j, n) absolute deviation of temperature from the long-term average on day j th of the month i th, in year n th compared to the long-term average temperature of the same day. In order to the values of temperature deviation of different times and places to be comparable at a certain time and place, it is necessary to standardize these absolute values of temperature deviation by means of temperature diffraction. Like day-to-day changes, diffuse T∆ at 31 days for each day is calculated by equation 3, then the 9-day moving average was performed three times
 
 
                                                                                                                                                           (3)
The value  is the average temperature deviation in 31 days that is calculated by equation 4:
                                                                                                                                                          (4)
Finally, Normalized Thermal Deviation (NTD) is calculated by the following equation:
                                                                                                                                                        (5)
Where .Then in MATLAB software, days with temperatures +2 above average (NTD) and lasting at least two days, were selected as the day with the HW (Equation 6).
                                                                                                                                                             (6)
Then the thermal island was calculated in Kermanshah and Iilam cities using Equation 7:
                                                                                                                                                              (7)
Where SUHI, is the surface heat island, MLSTurban is the average surface temperature in the urban area and FLSTrural is the surface temperature with the highest frequency of occurrence in the rural area.
 
Results and Discussion
The purpose of this study was Comparison the Impact rate of thermal islands from the occurrence of heat waves in Kermanshah and Ilam cities. Which has had an increasing trend in Kermanshah and no trend in Ilam. Also, the highest monthly frequency of heat waves in both cities was in March. Also the maximum duration of this risk was 4 days and short-term in Kermanshah and 6 days and long-term in Ilam. The results also showed that in both the heat wave and no heat wave condition, most of the day the cold island and at night sometimes the heat island (although weak) is formed in the Kermanshah and Ilam city centers, but in the heat wave conditions, especially in daytime and in Kermanshah city, the intensity of thermal islands was higher than normal. Studies also showed that the persistence of heat waves did not play a significant role in the intensification of thermal islands because the impact of thermal islands from the occurrence of two-day and four-day heat waves was almost the same. In the studied cities, in both Heat wave and no heat wave condition, a cold island has been formed in the city center, but in each heat wave, the intensity of the cold island has been more than a normal day for at least one day. In Ilam, even at night, mostly the cold islands have been created in the city center, although its intensity has been less compared to the daily cold islands. However, the most intense heat island in Kermanshah was in normal conditions, which was 3.5 degrees Celsius, but in Ilam, the most intense heat island occurred in heat wave conditions, which was 1.6 degrees Celsius. According to the explanations provided, the occurrence of heat waves did not have an effect on the intensification of thermal islands, especially during the day. In heat wave condition, in both cities the percentage of relative humidity was lower than normal, but the maximum wind speed in both cities was sometimes higher than normal days. to some extent indicates the open development horizons of the progress of the study area.
 
Conclusion
According to the results, thermal islands in both cities, especially in the daytime, even in the absence of heat waves in the center of the cities under study and have been affected by the occurrence of heat waves. Therefore, because according to scientists, climate change will increase climate risks such as heat waves, and the current small and non-industrial cities will experience more heat waves in the coming years, and will certainly grow and develop. Therefore, in order to prevent the negative consequences of the interaction of heat waves and heat islands in the future, further research is necessary. Also, in order to reduce the intensity of thermal islands and reduce the surface temperature in the center of these cities in the coming years, solutions such as: covering surfaces and buildings with materials with high heat capacity, protection of green spaces and creating green roofs, especially in urban centers, paying attention to the direction of the wind in the constructions so that there is a possibility of wind canalization and heat discharge between the buildings. Adjusting the density of buildings and their decentralized construction in the center of these cities seems necessary.
 

کلیدواژه‌ها [English]

  • MATLAB
  • Modis- Aqua
  • Fumiaki
  1. احمدی، محمود؛ داداشی رودباری، عباسعلی و ابراهیمی، رضا (1396) دورنمای فرین های گرم ایران مبتنی بر برون داد مدل میان مقیاس منطقه­ایی (REGCM4)، جغرافیا (فصلنامه علمی- پژوهشی و بین المللی انجمن جغرافیایی ایران)، دوره 15، شماره 52، صص 80-67. https://www.sid.ir/paper/150327/fa
  2. اسمعیل نژاد، مرتضی؛ خسروی، محمود؛ علیجانی، بهلول و مسعودیان، سید ابوالفضل (1392). شناسایی امواج گرمایی ایران، جغرافیا و توسعه، دوره 11، شماره 33، صص 54 – https://gdij.usb.ac.ir/article_1321.html
  3. اکبری، الهه؛ بهرامی، شهرام؛ دوران، عاطفه و ابراهیمی، مجید (1396). بررسی تأثیر برخی پارامترهای جغرافیایی بر دمای سطح زمین با استفاده از روش سبال و درخت تصمیم گیری در مخروط آتشفشان تفتان. فصلنامه علمی و پژوهشی فضای جغرافیایی، دوره 17، شماره 57، صص 126-105. http://geographical-space.iau-ahar.ac.ir/
  4. امیدوار، کمال؛ محمود آبادی، مهدی؛ الفتی، سعید و مرادی، خدیجه (1395). بررسی احتمال وقوع امواج گرمایی در ایستگاه­های منتخب استان کرمانشاه، مجله مخاطرات محیط طبیعی، دوره 5، شماره 10، 20-1. https://jneh.usb.ac.ir/article_2877.html
  5. آزادخانی، پاکزاد؛ اعظمی، هادی و چهره، معصومه (1397). کاربرد شاخص­های آسایش حرارتی در طراحی مسکن پایدار (مطالعه موردی شهر ایلام)، فصلنامه مطالعات عمران شهری، دوره 2، شماره 7، صص 24-4. https://elmnet.ir/article/2108056-10127
  6. بهاروندی، نسیبه؛ مجرد، فیروز و معصوم پور، جعفر (1397). شناسایی امواج گرمایی و تحلیل تغییرات زمانی- مکانی آنها در ایران، تحقیقات کاربردی علوم جغرافیایی، دوره 20، شماره 59، صص 58-39. https://jgs.khu.ac.ir/browse.php?a_id=3146&sid=1&slc_lang=fa&ftxt=0
  7. حاجی فتحعلی، مهسا؛ فیضی، محسن، دهقان، عاطفه (1400)، رابطه گرمای هوا، میانگین گرمای تابشی و آلبیدو، در کاهش جزایر حرارتی شهرها، فصلنامه جغرافیا، دوره 19، شماره 71، صص 190-173. http://dor.net/dor/20.1001.1.27833739.1400.19.71.9.6
  8. رحیمی، داریوش؛ میر هاشمی، حمید و علیزاده، تیمور (1396). تحلیل ساختار امواج گرمایی در غرب و شمال غرب ایران، جغرافیا و برنامه ریزی محیطی، دوره 28، شماره 3، صص 80- 69. https://gep.ui.ac.ir/article_22307.html
  9. صالحی، بهروز؛ قنبران، عبدالحمید و فردوسیان، سیما (1396). بررسی وضع موجود و تدوین ضوابط طراحی همساز با اقلیم در ساختمان­های مسکونی شهر ایلام، فصلنامه علمی- ترویجی فرهنگ ایلام، دوره 18، شماره 56، 117-110. http://www.farhangeilam.ir/article_61107.html
  10. عزیزی، قاسم. (1383). تغییر اقلیم. تهران: نشر قومس، چاپ اول، ص
  11. فاطمی نیا، فخری سادات؛ سبحانی، بهروز و مسعودیان، سید ابوالفضل (1397). واکاوی نمایه گستره برگ در ایران با استفاده از داده های ماهواره­ای سنجنده مودیس، دوره 18، شماره 48، 57-41. https://jgs.khu.ac.ir/browse.php?a_code=A-10-3570-1&slc_lang=fa&sid=1
  12. قاسمی فر، الهام و ناصرپور، سمیه (1396). تحلیل سینوپتیکی امواج گرما و سرما در سواحل جنوبی دریای خزر، فصلنامه علمی - پژوهشی اطلاعات جغرافیایی (سپهر)، دوره 26، شماره 103، صص 146-137. http://www.sepehr.org/article_28899.html
  13. کاشکی، عبدالرضا؛ کرمی، مختار؛ باعقیده، محمد و علیمرادی، محمد رضا (1398). واکاوی آماری امواج گرمایی زابل، دگرگونی­ها و مخاطرات آب و هوایی، دوره 1، شماره 3، صص 55-40. http://cccd.znu.ac.ir/article_36081.html
  14. الماسی، فائقه؛ طاووسی، تقی و حسین آبادی، نسرین (1395). واکاوی رفتار و تغییرات بسامد رخداد امواج گرمایی شهر اهواز، مجله آمایش جغرافیایی فضا، دوره 6، شماره 19، صص 150-137. http://gps.gu.ac.ir/article_32850.html
  15. مجرد، فیروز؛ ناصریه؛ مهتاب و هاشمی؛ سیروس (1397). بررسی تغییرات دوره­ای و فصلی جزیره­ گرمایی شهر کرمانشاه در شب و روز با استفاده از تصاویر ماهواره ای، فیزیک زمین و فضا، دوره 44، شماره 2، صص 494 -479. https://journal.ut.ac.ir/article_65886.html
  16. مسعودیان، سید ابوالفضل و ترکی، مسلم (1398). واکاوی تغییرات زمانی و مکانی جزیره گرمایی کلانشهر اهواز با کمک از داده­های مودیس، جغرافیا و برنامه ریزی محیطی، دوره 30، شماره 1، صص 92-75. https://gep.ui.ac.ir/article_24004.html
  17. منصوری، سحر، خالدی، شهریار، برنا، رضا و اسدیان، فریده (1398). اثر تغییرات کاربری و کاهش فضای سبز شهری بر تشدید جزیره گرمایی و آلودگی شهر تهران (مطالعه موردی: منطقه یک)، جغرافیا (فصلنامه علمی- پژوهشی و بین المللی انجمن جغرافیایی ایران)، دوره 17، شماره 63، صص 129-114. https://www.sid.ir/paper/375129/fa
  18. مولودی، گلاله؛ خورانی، اسدالله و مرادی، عباس (1394). اثر تغییر اقلیم بر امواج گرمایی سواحل شمالی خلیج‌فارس، نشریه تحلیل فضایی مخاطرات محیطی، دوره 3، شماره 1، صص 14 -1. https://jsaeh.khu.ac.ir/browse.php?a_code=A-10-3-37&slc_lang=fa&sid=1
  19. مولودی، گلاله؛ خورانی، اسدالله؛ مرادی، عباس (1394). اثر تغییر اقلیم بر امواج گرمایی سواحل شمالی خلیج‌فارس، نشریه تحلیل فضایی مخاطرات محیطی، دوره 3، شماره 1، صص 14 -1. https://jsaeh.khu.ac.ir/browse.php?a_code=A-10-3-37&slc_lang=fa&sid=1
  20. هاشمی دره بادامی، سیروس؛ خزایی، علی و علوی پناه، سید کاظم (1397). بررسی­های انعکاسی در کاهش اثر جزیره حرارتی شهری با استفاده از تصاویر ماهواره­ای (مطالعه موردی شهر کرمانشاه)، مطالعات و پژوهش­های شهری و منطقه­ای، دوره 7، شماره 25، صص 18-1. https://www.sid.ir/fa/journal/ViewPaper.aspx?ID=314823
  21. هاشمی دره بادامی، سیروس؛ خزایی، علی و علوی پناه، سید کاظم (1397). بررسی­های انعکاسی در کاهش اثر جزیره حرارتی شهری با استفاده از تصاویر ماهواره­ای (مطالعه موردی شهر کرمانشاه)، مطالعات و پژوهش­های شهری و منطقه­ای، دوره 7، شماره 25، صص. 18-1. https://journals.ui.ac.ir/article_20133.html
  22. Ahmadi, M., Dadashi Roudbari, A. & Ebrahimi, R. (2016). Prospects of Iran's warm climates based on the output of regional mesoscale model (REGCM4), Geography (Quarterly Scientific-Research and International Journal of the Geographical Society of Iran),Vol. 15, No. 52, pp. 67- 80. [Persian]
  23. Akbari, E., Bahrami, Sh., Doran, A. & Ebrahimi, M. (2017). Investigation of the effect of some geographical parameters on the surface temperature of the earth using Sabal method and decision tree in Taftan volcano cone. Journal of Geographical Space, Vol. 17, No. 57, PP.105-126. [Persian]
  24. Almasi, F., Tavousi, T. & Hosseinabadi, N. (2015). Analysis of Behavior and Frequency Changes in the Occurrence of Heat Waves in Ahvaz, Journal of Spatial Planning, Vol. 6 NO. 19, PP. 137-150. [Persian]
  25. Almusaed, A. (2011). The Urban Heat Island Phenomenon upon Urban Components. Biophilic and Bioclimatic Architecture, 21, PP. 139-150.
  26. Añel, J., Fernández-González, M., Labandeira, X., López-Otero, X. & dela Torre, L. (2017). Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere, No. 10, PP. 1-13.
  27. Azadkhani, P., Azami, H. & Chehreh, M. (2019). Application of Thermal Comfort Indices in Sustainable Housing Design (Case Study of Ilam City), Quarterly Journal of Urban Development Studies, Vol. 2, No. 7, PP. 24-4. [Persian]
  28. Azizi, Q. (2004). Climate change. Tehran: Qoms Publishing, first edition, P. 434. [Persian]
  29. Baharvandi, N., Mojarad, F. & Masoompour, J. (2019). Identification of heat waves and analysis of their spatio-temporal changes in Iran, Applied Research in Geographical Sciences, Vol. 20, No. 59, PP. 39-58. [Persian]
  30. Bai, L., Gangqiang, D., Shaohua, G., Peng, B., Buda, S., Dahe, Q., Ramamurthy, P. & BouZeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of geophysical research Atomospheres an AGU JOURNAL, No. 122, PP. 168-178.
  31. Basara, J., Basara, H., Bradley, I. & Kenneth, C. (2018). The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology, No. 7, PP.1-10.
  32. De Ridder, K., Maiheu B, Lauwaet D, Daglis I A, Keramitsoglou I, Kourtidis K, Manunta P, Paganini, M. (2016). Urban Heat Island Intensification during Hot Spells-The Case of Paris during the Summer of 2003. Urbanscience, NO. 1, PP.1-11.
  33. Dobrovolny, P. & Krahula, L. (2015). The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic, Moravian Geographical Reports, No. 23, PP. 8-16.
  34. Feng, C., Xuchao, Y. & Weiping, Z. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research, No. 138, PP. 364–377.
  35. Feron- Sarah, R., Cordero, R., Alessdro- Damiani, P., Llanillo, J., Jorquera, J., sepulveda, E., Asencio, V., Laroze, D., Labbe, F., Carrasco, J. torres G. (2019). observations and projections of Heat Waves in south Americas. Scientific reportst, No. 9, PP. 1-15.
  36. Founda D, Santamouris M. 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer. (2012). Scientific Reports. No. 7, PP.1-16.
  37. Fujibe, F., Yamazaki, N., Kobayashi, K. & Nakamigawa, H. (2007). long-term changes of
    temperature extremes and day-to-day variability in Japan, papers in Meterology and Geophysics, IPCC,85, PP. 63-70.
  38. Ghasemifar, E. & Naserpour, S. (2018). Synoptic analysis of heat and cold waves on the southern shores of the Caspian Sea, Journal of Geographical Information (Sepehr), Vol. 26, No. 103, PP. 137-146. [Persian].
  39. Ghobadi, A., Khosravi, M. &Tavousi, T. (2017). Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate, No. 10, PP. 1-16.
  40. Haji Fathali, M., Faizi, M. & Dehghan, A. (2022), the relationship between air heat, average radiant heat and albedo, in the reduction of heat islands in cities, Geography Quarterly, Vol 19, No. 71, pp. 173-190. [Persian]
  41. Hashemi Darreh Badami, S., Khazaei, A., Alavi Panah, S K., (2018). Reflective studies on reducing the effect of urban heat island using satellite images (Case study of Kermanshah), urban and regional studies and research, Vol. 7, No. 25, pp. 1-18. [Persian]
  42. Hosseini A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran, Sustainable Cities and Society, No. 23, PP. 94-104.
  43. https://search.earthdata.nasa.gov/.
  44. Ismail Nejad, M., Khosravi, M., Alijani, B. & Masoudian, S.A. (2013). Identification of Iranian heat waves, Geography and Development, Vol. 11. No. 33, PP. 39 – 54. [Persian]
  45. Kashki, A R., Karami, Baaghideh, , Moradi, Ali Mohammad, R. (2019). Statistical analysis of Zabul heat waves, changes and climate hazards, Vol, 1. No. 3. PP. 40-55 [Persian]
  46. Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. (2017). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science. No. 21, PP. 1-8.
  47. Lazzarini, M., Marpu, PR. & Ghedira, H. (2013). Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, No. 130, PP. 136-152.
  48. Lemonsu, A., Viguié, V., Daniel, M & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, No. 14, PP. 586–605.
  49. Mansouri, S., Khaledi, S., Borna, R & Asadian, F (2018). The effect of land use changes and reduction of urban green space on the aggravation of heat island and pollution of Tehran city (case study: region one), Geography (Quarterly Scientific-Research and International Journal of the Geographical Society of Iran), No. 63, pp. 114-129 [Persian]
  50. Masoudian, S A., Turkish, M (2018). Analyzing the temporal and spatial changes of the heat island of Ahvaz metropolis with the help of MODIS data, Geography and Environmental Planning, No. 1, pp. 75-92.
  51. Mojarrad, F., Naseriyeh, & Hashemi, S. (2018). Investigation of periodic and seasonal changes of the heat island of Kermanshah day and night using satellite images, Earth and space physics,Vol. 44,No. 2, PP. 479-494 [Persian]
  52. Moloudi, G., Khorani, A. & Moradi, A. (2015). The effect of climate change on the heat waves of the northern shores of the Persian Gulf, Journal of Spatial Analysis of Environmental Hazards, Vol. 3, No. PP. 1-14 [Persian]
  53. Omidvar, K., Mahmoud Abadi, M., Olfati, Saeed. & Moradi, Kh. (2016). Investigation of the possibility of heat waves in selected stations of Kermanshah province, Journal of Natural Hazards, Vol. 5, No. 10, PP. 1-20. [Persian]
  54. Paravantis, J., Santamouris, M., Constantinos, C., Efthymiou, C. & Kontoulis N. (2017) Mortality Associated with High Ambient Temperatures Heatwaves, and the Urban Heat Island in Athens, Greece, Sustainability, No. 606, PP. 2-22.
  55. Rahimi, D., Mir Hashemi, H. & Alizadeh, T. (2017). Analysis of heat wave structure in western and northwestern Iran, Geography and Environmental Planning, Vol. 28, No. 3, PP. 69-80. [Persian]
  56. Ramamurthy P. & Bou‐Zeid E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research: Atmospheres, No. 1, PP. 168-178.
  57. Salehi, B., Ghanbaran, AH. & Ferdowsian, S. (2017). Investigating the current situation and compiling criteria for climate-Compatible design in residential buildings in Ilam city, Ilam Culture Scientific-Extension Quarterly, Vol. 18, No, 56, PP. 117-110. [Persian]
  58. Solomon, S., Qin, D., Manning, Ch., Marquis, M., Muhire,, K.B.I. & Ahmed, F. (2016). Spatiotemporal trends in mean temperatures and aridityindex over Rwanda. Theoretical and Applied Climatology, No. 123, PP. 399-414.
  59. Weihe, Z., Shuang, Ji., Tsun-Hsuan, Ch., Hou, Y. & Zhang, K. (2014). The 2011 heat wave in Greater Houston: Effects of land use on temperature. Environmental Research, No. 135, PP. 81–87.
  60. Wilks, D.S. (2006). Statistical Methods in the Atmospheric Sciences, Second Edition, Academic Press is an imprint of Elsevier, Cornell University, USA, PP. 648.
  61. Zhou, B., Lauwaet, D., Hooyberghs, H., De Ridder, Kropp, K.D. & Rybski, J. (2016). Assessing Seasonality in the Surface Urban Heat Island of London, Journal Of Applied Meteorology and Climatology, No. 55, PP. 493-505.